Symbolic time series analysis for anomaly detection: A comparative evaluation

Shin C. Chin, Asok Ray, Venkatesh Rajagopalan

Research output: Contribution to journalArticlepeer-review

61 Scopus citations

Abstract

Recent literature has reported a novel method for anomaly detection in complex dynamical systems, which relies on symbolic time series analysis and is built upon the principles of automata theory and pattern recognition. This paper compares the performance of this symbolic-dynamics-based method with that of other existing pattern recognition techniques from the perspectives of early detection of small anomalies. Time series data of observed process variables on the fast time-scale of dynamical systems are analyzed at slow time-scale epochs of (possible) anomalies. The results are derived from experiments on a nonlinear electronic system with a slowly varying dissipation parameter.

Original languageEnglish (US)
Pages (from-to)1859-1868
Number of pages10
JournalSignal Processing
Volume85
Issue number9
DOIs
StatePublished - Sep 2005

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Software
  • Signal Processing
  • Computer Vision and Pattern Recognition
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Symbolic time series analysis for anomaly detection: A comparative evaluation'. Together they form a unique fingerprint.

Cite this