TY - JOUR
T1 - Synaptic physiology and ultrastructure in comatose mutants define an in vivo role for NSF in neurotransmitter release
AU - Kawasaki, Fumiko
AU - Mattiuz, Annette M.
AU - Ordway, Richard W.
PY - 1998/12/15
Y1 - 1998/12/15
N2 - N-Ethylmaleimide-sensitive fusion protein (NSF) is a cytosolic protein thought to play a key role in vesicular transport in all eukaryotic cells. Although NSF was proposed to function in the trafficking of synaptic vesicles responsible for neurotransmitter release, only recently have in vivo experiments begun to reveal a specific function for NSF in this process. Our previous work showed that mutations in a Drosophila NSF gene, dNSF1, are responsible for the temperature-sensitive paralytic phenotype in comatose (comt) mutants. In this study, we perform electrophysiological and ultrastructural analyses in three different comt alleles to investigate the function of dNSF1 at native synapses in vivo. Electrophysiological analysis of postsynaptic potentials and currents at adult neuromuscular synapses revealed that in the absence of repetitive stimulation, comt synapses exhibit wild-type neurotransmitter release at restrictive (paralytic) temperatures. In contrast, repetitive stimulation at restrictive temperatures revealed a progressive, activity-dependent reduction in neurotransmitter release in comt but not in wild type. These results indicate that dNSF1 does not participate directly in the fusion of vesicles with the target membrane but rather functions in maintaining the pool of readily releasable vesicles competent for fast calcium-triggered fusion. To define dNSF1 function further, we used transmission electron microscopy to examine the distribution of vesicles within synaptic terminals, and observed a marked accumulation of docked vesicles at restrictive temperatures in comt. Together, the results reported here define a role for dNSF1 in the priming of docked synaptic vesicles for calcium-triggered fusion.
AB - N-Ethylmaleimide-sensitive fusion protein (NSF) is a cytosolic protein thought to play a key role in vesicular transport in all eukaryotic cells. Although NSF was proposed to function in the trafficking of synaptic vesicles responsible for neurotransmitter release, only recently have in vivo experiments begun to reveal a specific function for NSF in this process. Our previous work showed that mutations in a Drosophila NSF gene, dNSF1, are responsible for the temperature-sensitive paralytic phenotype in comatose (comt) mutants. In this study, we perform electrophysiological and ultrastructural analyses in three different comt alleles to investigate the function of dNSF1 at native synapses in vivo. Electrophysiological analysis of postsynaptic potentials and currents at adult neuromuscular synapses revealed that in the absence of repetitive stimulation, comt synapses exhibit wild-type neurotransmitter release at restrictive (paralytic) temperatures. In contrast, repetitive stimulation at restrictive temperatures revealed a progressive, activity-dependent reduction in neurotransmitter release in comt but not in wild type. These results indicate that dNSF1 does not participate directly in the fusion of vesicles with the target membrane but rather functions in maintaining the pool of readily releasable vesicles competent for fast calcium-triggered fusion. To define dNSF1 function further, we used transmission electron microscopy to examine the distribution of vesicles within synaptic terminals, and observed a marked accumulation of docked vesicles at restrictive temperatures in comt. Together, the results reported here define a role for dNSF1 in the priming of docked synaptic vesicles for calcium-triggered fusion.
UR - http://www.scopus.com/inward/record.url?scp=0032535040&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032535040&partnerID=8YFLogxK
U2 - 10.1523/jneurosci.18-24-10241.1998
DO - 10.1523/jneurosci.18-24-10241.1998
M3 - Article
C2 - 9852561
AN - SCOPUS:0032535040
SN - 0270-6474
VL - 18
SP - 10241
EP - 10249
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 24
ER -