Synchronization of coupled oscillators is a game

Huibing Yin, Prashant G. Mehta, Sean P. Meyn, Uday V. Shanbhag

Research output: Chapter in Book/Report/Conference proceedingConference contribution

33 Scopus citations

Abstract

The purpose of this paper is to understand phase transition in noncooperative dynamic games with a large number of agents. Applications are found in neuroscience, biology, economics, as well as traditional engineering applications. The focus of analysis is a variation of the large population LQG model of Huang et. al. 2007 [6], comprised here of a controlled nonlinear N-dimensional stochastic differential equation model, coupled only through a nonlinear cost function. The states are interpreted as the phase angle for a collection of non-homogeneous oscillators, and in this way the model may be regarded as an extension of the classical coupled oscillator model of Kuramoto. A deterministic PDE model is proposed, which is shown to approximate the stochastic system as the population size approaches infinity. Key to the analysis of the PDE model is the existence of a particular Nash equilibrium in which the agents 'opt out' of the game, setting their controls to zero, resulting in the 'incoherence' equilibrium. Methods from dynamical systems theory are used in a bifurcation analysis, based on a linearization of the PDE model about the incoherence equilibrium. A critical value of the control cost parameter is identified: Above this value, the oscillators are incoherent; and below this value (when control is sufficiently cheap) the oscillators synchronize. These conclusions are illustrated with results from numerical experiments.

Original languageEnglish (US)
Title of host publicationProceedings of the 2010 American Control Conference, ACC 2010
Pages1783-1790
Number of pages8
StatePublished - 2010
Event2010 American Control Conference, ACC 2010 - Baltimore, MD, United States
Duration: Jun 30 2010Jul 2 2010

Publication series

NameProceedings of the 2010 American Control Conference, ACC 2010

Other

Other2010 American Control Conference, ACC 2010
Country/TerritoryUnited States
CityBaltimore, MD
Period6/30/107/2/10

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Synchronization of coupled oscillators is a game'. Together they form a unique fingerprint.

Cite this