Synoptic composites of the extratropical transition life cycle of North Atlantic tropical cyclones: Factors determining posttransition evolution

Robert E. Hart, Jenni L. Evans, Clark Evans

Research output: Contribution to journalArticlepeer-review

84 Scopus citations

Abstract

A 34-member ensemble-mean trajectory through the cyclone phase space (CPS) is calculated using Navy Operational Global Atmospheric Prediction System (NOGAPS) analyses for North Atlantic tropical cyclones (TCs) undergoing extratropical transition (ET). Synoptic composites at four ET milestones are examined: 24 h prior to the beginning of ET (TB - 24), the beginning of ET (TB), the end of ET (TE), and 24 h after the end of ET (TE - 24). While the extratropically transitioning TC structure is tightly constrained in its tropical phase, it has a variety of evolutions after TE. Partitioning the ensemble based upon post-ET intensity change or structure discriminates among statistically significant ET precursor conditions. Compositing the various post-ET intensity regimes provides insight into the important environmental factors governing post-ET development. A TC that intensifies (weakens) after TE begins transition (t = TB) with a negatively (positively) tilted trough 1000 km (1500 km) upstream. The negative tilt permits a contraction and intensification of the eddy potential vorticity (PV) flux, while the positive trough tilt prevents contraction and intensification of the forcing. In 6 of the 34 cases, the posttropical cold-core cyclone develops a warm-seclusion structure, rather than remaining cold core. Anticipation of this warm-seclusion evolution is critical since it represents a dramatically increased risk of middle- to high-latitude wind and wave damage. The warm-seclusion evolution is most favored when the scale of the interacting trough closely matches the scale of the transitioned TC, focusing the eddy PV flux in the outflow layer of the transitioning TC. The sensitivity of structural evolution prior to and after TE illustrated here gives insight into the degradation of global model midlatitude forecast accuracy during a pending ET event. Eliassen-Palm flux cross sections suggest that ET is primarily driven by the eddy angular momentum flux of the trough, rather than the eddy heat flux associated with the trough. The response of the transitioning TC to the eddy angular momentum forcing is to produce adiabatic ascent and cooling radially inward and beneath the region of the forcing to restore thermal wind balance. In the case of ET, the forcing is maximized lower in the atmosphere, and spread over much greater depth, than in the case of trough-induced TC intensification. Only after TE is the eddy heat flux forcing as significant as the eddy angular momentum forcing, further supporting a physical foundation for the CPS description of cyclone evolution.

Original languageEnglish (US)
Pages (from-to)553-578
Number of pages26
JournalMonthly Weather Review
Volume134
Issue number2
DOIs
StatePublished - Feb 2006

All Science Journal Classification (ASJC) codes

  • Atmospheric Science

Fingerprint

Dive into the research topics of 'Synoptic composites of the extratropical transition life cycle of North Atlantic tropical cyclones: Factors determining posttransition evolution'. Together they form a unique fingerprint.

Cite this