Syntheses and Transformations of α-Amino Acids via Palladium-Catalyzed Auxiliary-Directed sp3 C-H Functionalization

Gang He, Bo Wang, William A. Nack, Gong Chen

Research output: Contribution to journalArticlepeer-review

423 Scopus citations


Conspectusα-Amino acids (αAA) are one of the most useful chiral building blocks for synthesis. There are numerous general strategies that have commonly been used for αAA synthesis, many of which employ de novo synthesis focused on enantioselective bond construction around the Cα center and others that consider conversion of existing αAA precursors carrying suitable functional groups on side chains (e.g., serine and aspartic acid). Despite significant advances in synthetic methodology, the efficient synthesis of enantiopure αAAs carrying complex side chains, as seen in numerous peptide natural products, remains challenging. Complementary to these "conventional" strategies, a strategy based on the selective functionalization of side chain C-H bonds, particularly sp3 hybridized C-H bonds, of various readily available αAA precursors may provide a more straightforward and broadly applicable means for the synthesis and transformation of αAAs. However, many hurdles related to the low reactivity of C(sp3)-H bonds and the difficulty of controlling selectivity must be overcome to realize the potential of C-H functionalization chemistry in this synthetic application. Over the past few years, we have carried out a systematic investigation of palladium-catalyzed bidentate auxiliary-directed C-H functionalization reactions for αAA substrates. Our strategies utilize two different types of amide-linked auxiliary groups, attached at the N or C terminus of αAA substrates, to exert complementary regio- and stereocontrol on C-H functionalization reactions through palladacycle intermediates. A variety of αAA precursors can undergo multiple modes of C(sp3)-H functionalization, including arylation, alkenylation, alkynylation, alkylation, alkoxylation, and intramolecular aminations, at the β, γ, and even δ positions to form new αAA products with diverse structures. In addition to transforming αAAs at previously unreachable positions, these palladium-catalyzed C-H functionalization strategies enable new retrosynthetic logic for the synthesis of many basic αAAs from a common alanine precursor. This approach reduces the synthetic difficulty for many αAAs by bypassing the requirement for stereocontrol at Cα and relies on straightforward and convergent single-bond coupling transformations at the β-methyl position of alanine to access a wide range of β-monosubstituted αAAs. Moreover, these β-monosubstituted αAAs can undergo further C-H functionalization at the β-methylene position to generate various β-branched αAAs in a stereoselective and programmable fashion. These new strategies offer readily applicable methods for synthesis of challenging αAAs and may facilitate the efficient total synthesis of complex peptide natural products.

Original languageEnglish (US)
Pages (from-to)635-645
Number of pages11
JournalAccounts of Chemical Research
Issue number4
StatePublished - Apr 19 2016

All Science Journal Classification (ASJC) codes

  • General Chemistry


Dive into the research topics of 'Syntheses and Transformations of α-Amino Acids via Palladium-Catalyzed Auxiliary-Directed sp3 C-H Functionalization'. Together they form a unique fingerprint.

Cite this