Abstract
Flavodiiron NO reductases (FNORs) are important enzymes in microbial pathogenesis, as they equip microbes with resistance to the human immune defense agent nitric oxide (NO). DFT calculations predict that a network of second coordination sphere (SCS) hydrogen bonds is critical for the key N[sbnd]N coupling step in the NO reduction reaction catalyzed by FNORs. In this study, we report the synthesis of a model complex of FNORs with pendant hydrogen bond donors. For this purpose, the ligand H[BPMP] (= 2,6-bis[[bis(2-pyridylmethyl)amino]methyl]-4-methylphenol) was modified with two amide groups in the SCS. Reaction of the precursor complex [Fe2(BPMP(NHCOtBu)2)(OAc)](OTf)2 (1) (OTf− = triflate anion) with NO in the presence of base led to the surprising isolation of a diiron mononitrosyl complex, [Fe2(BPMP(NHCOtBu)(NCOtBu))(OAc)(NO)](OTf) (2) and a triiron decomposition product, [Fe3(BPMP(NHCOtBu)2)(OAc)2(μ-O)2(ONO)](OTf) (3), which were both structurally characterized. Complex 2 models the corresponding mononitrosyl adduct in FNORs. This result points towards a strategy that can be used to stabilize mononitrosyl diiron complexes, using the SCS.
Original language | English (US) |
---|---|
Article number | 111723 |
Journal | Journal of Inorganic Biochemistry |
Volume | 229 |
DOIs | |
State | Published - Apr 2022 |
All Science Journal Classification (ASJC) codes
- Biochemistry
- Inorganic Chemistry