Synthesis and characterization of a novel pH-responsive drug-releasing nanocomposite hydrogel for skin cancer therapy and wound healing

Andrea Gonsalves, Pranjali Tambe, Duong Le, Dheeraj Thakore, Aniket S. Wadajkar, Jian Yang, Kytai T. Nguyen, Jyothi U. Menon

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Local skin cancer recurrence occurs in ∼12% of the patients post-surgery due to persistent growth of residual cancer cells. Wound infection is another significant complication following surgery. We report a novel in situ-forming nanocomposite hydrogel (NCH) containing PLGA-carboxymethyl chitosan nanoparticles (186 nm) for localized pH-responsive skin cancer therapy and wound healing. This injectable hydrogel, comprising of a citric acid-derived polymer backbone, gelled within 5 minutes, and demonstrated excellent swelling (283% of dry weight) and compressive strengths (∼5.34 MPa). Nanoparticle incorporation did not significantly affect hydrogel properties. The NCH effluents were cytocompatible with human dermal fibroblasts at 500 μg ml-1 concentration and demonstrated pH-dependent drug release and promising therapeutic efficacy against A431 and G361 skin cancer cells in vitro. Significant zones of inhibition were observed in S. aureus and E. coli cultures on NCH treatment, confirming its antibacterial properties. Our studies show that the pH-responsive NCH can be potentially used for adjuvant skin cancer treatment and wound healing.

Original languageEnglish (US)
Pages (from-to)9533-9546
Number of pages14
JournalJournal of Materials Chemistry B
Volume9
Issue number46
DOIs
StatePublished - Dec 14 2021

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biomedical Engineering
  • Materials Science(all)

Fingerprint

Dive into the research topics of 'Synthesis and characterization of a novel pH-responsive drug-releasing nanocomposite hydrogel for skin cancer therapy and wound healing'. Together they form a unique fingerprint.

Cite this