Synthesis and processing of doped Hg1Ba2Ca2Cu3Oy superconductors

P. V.P.S.S. Sastry, J. Schwartz

Research output: Contribution to journalArticlepeer-review

8 Scopus citations


A series of quenching experiments were conducted to understand the sequence of reactions that occur during the synthesis of doped Hg1223, (Hg, A)Ba2Ca2Cu3Oy, A= Re, Bi, and Pb (HgA1223). The formation and decomposition of the intermediate phases during the high-temperature reaction were followed as a function of temperature. HgA1223 phase forms over a wide range of temperatures, 750-950°C, 750-880°C, and 840-880°C for A = Re, Pb, and Bi, respectively. At T < 750°C, HgA1212 phase forms for A = Re and Pb. Based on the results of quenching experiments, heat treatment conditions were optimized for the synthesis of pure HgA1223 phase using commercial BaCaCuO precursor powders. A reduced-temperature annealing stage after the high-temperature reaction helps in grain growth and improves the microstructural characteristics of HgA1223 samples. Control of Hg pressure during the reaction is crucial for achieving phase purity, grain growth, and texture in the final products. A novel approach for the control of Hg pressure during the synthesis of HgA1223, which consists of using CaHgO2 as an external Hg source, is reported. HgA1223 samples synthesized using the new synthesis protocol exhibit improved microstructural and superconducting properties.

Original languageEnglish (US)
Pages (from-to)595-602
Number of pages8
JournalJournal of Superconductivity
Issue number5
StatePublished - 1998

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Physics and Astronomy (miscellaneous)


Dive into the research topics of 'Synthesis and processing of doped Hg1Ba2Ca2Cu3Oy superconductors'. Together they form a unique fingerprint.

Cite this