Abstract
To synthesize (Na1-xKx)NbO3 nanorods, the Nb2O5-added (1-y)NaOH-yKOH specimens with 0.0≤y≤0.9 were heated at 160°C and subsequently annealed at 500°C. Homogeneous Na-rich (Na1-xKx)NbO3 nanorods were only synthesized for the specimen with y=0.15. However, NaNbO3 nanorods were formed for specimens with y<0.15, and K-rich (Na1-xKx)NbO3 nanoplates were obtained for specimens with y>0.2. The (Na8xK8-8x)Nb6O19{dot operator}nH2O transient phase was formed in the specimen with y=0.15 heated at 160°C for 8.0-12.0h, and this phase transformed into the Na-rich (Na1-xKx)NbO3 nanorods after annealing at 500°C. Therefore, the formation of a homogeneous (Na8xK8-8x)Nb6O19{dot operator}nH2O phase at a low temperature is very important for the synthesis of the (Na1-xKx)NbO3 nanorods. The (Na8xK8-8x)Nb6O19{dot operator}nH2O phase was considerably influenced by the heating temperature, and the processing time. The Na-rich (Na1-xKx)NbO3 nanorods have rectangular shape with various sizes, and the growth direction of these nanorods is [001].
Original language | English (US) |
---|---|
Pages (from-to) | 16-21 |
Number of pages | 6 |
Journal | Chemical Engineering Journal |
Volume | 211-212 |
DOIs | |
State | Published - Nov 15 2012 |
All Science Journal Classification (ASJC) codes
- General Chemistry
- Environmental Chemistry
- General Chemical Engineering
- Industrial and Manufacturing Engineering