Abstract
Magnetic porous Fe3O4/C/Cu2O composites were prepared by a simple two-step process. Porous Fe3O4/C was synthesized via calcining iron tartrate precursor and then Cu2O was composited with Fe3O4/C by a precipitation-reduction method. The as-prepared samples were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) elemental mapping. Results show that Fe3O4/C has porous nanorod structure, which is composed of numerous small nanoparticles of about 50 nm. Fe3O4 and carbon are uniformly distributed in the Fe3O4/C/Cu2O composite and Cu2O is dispersed on the surface of Fe3O4/C. Fe3O4/C/Cu2O composite exhibits excellent photo-Fenton catalytic performance for the degradation of methylene blue (MB) under visible light irradiation and neutral pH conditions, and MB (100 mg/L) could be almost completely removed within 60 min. The composite shows good recyclability and could be conveniently separated by an applied magnetic field. These results demonstrate that the Fe3O4/C/Cu2O composite is a powerful Fenton-like catalyst for degradation of organic pollutants from wastewater.
Original language | English (US) |
---|---|
Pages (from-to) | 119-125 |
Number of pages | 7 |
Journal | Journal of Colloid And Interface Science |
Volume | 475 |
DOIs | |
State | Published - Aug 1 2016 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Biomaterials
- Surfaces, Coatings and Films
- Colloid and Surface Chemistry