TY - GEN
T1 - Synthetic Augmentation with Large-Scale Unconditional Pre-training
AU - Ye, Jiarong
AU - Ni, Haomiao
AU - Jin, Peng
AU - Huang, Sharon X.
AU - Xue, Yuan
N1 - Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.
PY - 2023
Y1 - 2023
N2 - Deep learning based medical image recognition systems often require a substantial amount of training data with expert annotations, which can be expensive and time-consuming to obtain. Recently, synthetic augmentation techniques have been proposed to mitigate the issue by generating realistic images conditioned on class labels. However, the effectiveness of these methods heavily depends on the representation capability of the trained generative model, which cannot be guaranteed without sufficient labeled training data. To further reduce the dependency on annotated data, we propose a synthetic augmentation method called HistoDiffusion, which can be pre-trained on large-scale unlabeled datasets and later applied to a small-scale labeled dataset for augmented training. In particular, we train a latent diffusion model (LDM) on diverse unlabeled datasets to learn common features and generate realistic images without conditional inputs. Then, we fine-tune the model with classifier guidance in latent space on an unseen labeled dataset so that the model can synthesize images of specific categories. Additionally, we adopt a selective mechanism to only add synthetic samples with high confidence of matching to target labels. We evaluate our proposed method by pre-training on three histopathology datasets and testing on a histopathology dataset of colorectal cancer (CRC) excluded from the pre-training datasets. With HistoDiffusion augmentation, the classification accuracy of a backbone classifier is remarkably improved by 6.4% using a small set of the original labels. Our code is available at https://github.com/karenyyy/HistoDiffAug.
AB - Deep learning based medical image recognition systems often require a substantial amount of training data with expert annotations, which can be expensive and time-consuming to obtain. Recently, synthetic augmentation techniques have been proposed to mitigate the issue by generating realistic images conditioned on class labels. However, the effectiveness of these methods heavily depends on the representation capability of the trained generative model, which cannot be guaranteed without sufficient labeled training data. To further reduce the dependency on annotated data, we propose a synthetic augmentation method called HistoDiffusion, which can be pre-trained on large-scale unlabeled datasets and later applied to a small-scale labeled dataset for augmented training. In particular, we train a latent diffusion model (LDM) on diverse unlabeled datasets to learn common features and generate realistic images without conditional inputs. Then, we fine-tune the model with classifier guidance in latent space on an unseen labeled dataset so that the model can synthesize images of specific categories. Additionally, we adopt a selective mechanism to only add synthetic samples with high confidence of matching to target labels. We evaluate our proposed method by pre-training on three histopathology datasets and testing on a histopathology dataset of colorectal cancer (CRC) excluded from the pre-training datasets. With HistoDiffusion augmentation, the classification accuracy of a backbone classifier is remarkably improved by 6.4% using a small set of the original labels. Our code is available at https://github.com/karenyyy/HistoDiffAug.
UR - http://www.scopus.com/inward/record.url?scp=85174680897&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85174680897&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-43895-0_71
DO - 10.1007/978-3-031-43895-0_71
M3 - Conference contribution
AN - SCOPUS:85174680897
SN - 9783031438943
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 754
EP - 764
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 - 26th International Conference, Proceedings
A2 - Greenspan, Hayit
A2 - Greenspan, Hayit
A2 - Madabhushi, Anant
A2 - Mousavi, Parvin
A2 - Salcudean, Septimiu
A2 - Duncan, James
A2 - Syeda-Mahmood, Tanveer
A2 - Taylor, Russell
PB - Springer Science and Business Media Deutschland GmbH
T2 - 26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023
Y2 - 8 October 2023 through 12 October 2023
ER -