Abstract
Purpose: Magnetic resonance imaging (MRI) provides noninvasive evaluation of patient's anatomy without using ionizing radiation. Due to this and the high soft-tissue contrast, MRI use has increased and has potential for use in longitudinal studies where changes in patients’ anatomy or tumors at different time points are compared. Deformable image registration can be useful for these studies. Here, we describe two datasets that can be used to evaluate the registration accuracy of systems for MR images, as it cannot be assumed to be the same as that measured on CT images. Acquisition and validation methods: Two sets of images were created to test registration accuracy. (a) A porcine phantom was created by placing ten 0.35-mm gold markers into porcine meat. The porcine phantom was immobilized in a plastic container with movable dividers. T1-weighted, T2-weighted, and CT images were acquired with the porcine phantom compressed in four different ways. The markers were not visible on the MR images, due to the selected voxel size, so they did not interfere with the measured registration accuracy, while the markers were visible on the CT images and were used to identify the known deformation between positions. (b) Synthetic images were created using 28 head and neck squamous cell carcinoma patients who had MR scans pre-, mid-, and postradiotherapy treatment. An inter- and intrapatient variation model was created using these patient scans. Four synthetic pretreatment images were created using the interpatient model, and four synthetic post-treatment images were created for each of the pretreatment images using the intrapatient model. Data format and usage notes: The T1-weighted, T2-weighted, and CT scans of the porcine phantom in the four positions are provided. Four T1-weighted synthetic pretreatment images each with four synthetic post-treatment images, and four T2-weighted synthetic pretreatment images each with four synthetic post-treatment images are provided. Additionally, the applied deformation vector fields to generate the synthetic post-treatment images are provided. The data are available on TCIA under the collection MRI-DIR. Potential applications: The proposed database provides two sets of images (one acquired and one computer generated) for use in evaluating deformable image registration accuracy. T1- and T2-weighted images are available for each technique as the different image contrast in the two types of images may impact the registration accuracy.
Original language | English (US) |
---|---|
Pages (from-to) | 4315-4321 |
Number of pages | 7 |
Journal | Medical Physics |
Volume | 45 |
Issue number | 9 |
DOIs | |
State | Published - Sep 2018 |
All Science Journal Classification (ASJC) codes
- Biophysics
- Radiology Nuclear Medicine and imaging