Synthetic homeostatic materials with chemo-mechano-chemical self-regulation

Ximin He, Michael Aizenberg, Olga Kuksenok, Lauren D. Zarzar, Ankita Shastri, Anna C. Balazs, Joanna Aizenberg

Research output: Contribution to journalArticlepeer-review

421 Scopus citations

Abstract

Living organisms have unique homeostatic abilities, maintaining tight control of their local environment through interconversions of chemical and mechanical energy and self-regulating feedback loops organized hierarchically across many length scales. In contrast, most synthetic materials are incapable of continuous self-monitoring and self-regulating behaviour owing to their limited single-directional chemomechanical or mechanochemical modes. Applying the concept of homeostasis to the design of autonomous materials would have substantial impacts in areas ranging from medical implants that help stabilize bodily functions to 'smart' materials that regulate energy usage. Here we present a versatile strategy for creating self-regulating, self-powered, homeostatic materials capable of precisely tailored chemo-mechano-chemical feedback loops on the nano-or microscale. We design a bilayer system with hydrogel-supported, catalyst-bearing microstructures, which are separated from a reactant-containing 'nutrient' layer. Reconfiguration of the gel in response to a stimulus induces the reversible actuation of the microstructures into and out of the nutrient layer, and serves as a highly precise 'on/off' switch for chemical reactions. We apply this design to trigger organic, inorganic and biochemical reactions that undergo reversible, repeatable cycles synchronized with the motion of the microstructures and the driving external chemical stimulus. By exploiting a continuous feedback loop between various exothermic catalytic reactions in the nutrient layer and the mechanical action of the temperature-responsive gel, we then create exemplary autonomous, self-sustained homeostatic systems that maintain a user-defined parameter-temperature-in a narrow range. The experimental results are validated using computational modelling that qualitatively captures the essential features of the self-regulating behaviour and provides additional criteria for the optimization of the homeostatic function, subsequently confirmed experimentally. This design is highly customizable owing to the broad choice of chemistries, tunable mechanics and its physical simplicity, and may lead to a variety of applications in autonomous systems with chemo-mechano-chemical transduction at their core.

Original languageEnglish (US)
Pages (from-to)214-218
Number of pages5
JournalNature
Volume487
Issue number7406
DOIs
StatePublished - Jul 12 2012

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Synthetic homeostatic materials with chemo-mechano-chemical self-regulation'. Together they form a unique fingerprint.

Cite this