System integration and operation of a research unmanned aerial vehicle

Eric N. Johnson, Daniel P. Schrage

Research output: Contribution to journalArticlepeer-review

83 Scopus citations

Abstract

The use of flight simulation tools to reduce the schedule, risk, and required amount of flight testing for complex aerospace systems is a well-recognized benefit of these approaches. However, some special challenges arise when one attempts to obtain these benefits for the development and operation of a research unmanned aerial vehicle (UAV) system. Research UAV systems are characterized by the need for continual checkout of experimental software and hardware. Also, flight testing can be further leveraged by complementing experimental results with flight-test validated simulation results for the same vehicle system. In this paper, flight simulation architectures for system design, integration, and operation of an experimental helicopter-based UAV are described. The chosen helicopter-based UAV platform (a Yamaha R-Max) is well instrumented: differential GPS, an inertial measurement unit, sonar altimetry, and a three-axis magnetometer. One or two general-purpose flight processors can be utilized. Research flight test results obtained to date, including those completed in conjunction with the DARPA Software Enabled Control program, are summarized.

Original languageEnglish (US)
Pages (from-to)5-18
Number of pages14
JournalJournal of Aerospace Computing, Information and Communication
Issue numberJAN.
DOIs
StatePublished - Jan 2004

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Computer Science Applications
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'System integration and operation of a research unmanned aerial vehicle'. Together they form a unique fingerprint.

Cite this