TY - JOUR
T1 - Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral Endosymbionts
AU - LaJeunesse, Todd C.
AU - Parkinson, John Everett
AU - Gabrielson, Paul W.
AU - Jeong, Hae Jin
AU - Reimer, James Davis
AU - Voolstra, Christian R.
AU - Santos, Scott R.
N1 - Publisher Copyright:
© 2018 The Author(s)
PY - 2018/8/20
Y1 - 2018/8/20
N2 - The advent of molecular data has transformed the science of organizing and studying life on Earth. Genetics-based evidence provides fundamental insights into the diversity, ecology, and origins of many biological systems, including the mutualisms between metazoan hosts and their micro-algal partners. A well-known example is the dinoflagellate endosymbionts (“zooxanthellae”) that power the growth of stony corals and coral reef ecosystems. Once assumed to encompass a single panmictic species, genetic evidence has revealed a divergent and rich diversity within the zooxanthella genus Symbiodinium. Despite decades of reporting on the significance of this diversity, the formal systematics of these eukaryotic microbes have not kept pace, and a major revision is long overdue. With the consideration of molecular, morphological, physiological, and ecological data, we propose that evolutionarily divergent Symbiodinium “clades” are equivalent to genera in the family Symbiodiniaceae, and we provide formal descriptions for seven of them. Additionally, we recalibrate the molecular clock for the group and amend the date for the earliest diversification of this family to the middle of the Mesozoic Era (∼160 mya). This timing corresponds with the adaptive radiation of analogs to modern shallow-water stony corals during the Jurassic Period and connects the rise of these symbiotic dinoflagellates with the emergence and evolutionary success of reef-building corals. This improved framework acknowledges the Symbiodiniaceae's long evolutionary history while filling a pronounced taxonomic gap. Its adoption will facilitate scientific dialog and future research on the physiology, ecology, and evolution of these important micro-algae. Symbiodinium are micro-algal symbionts of reef-building corals. LaJeunesse et al. report new estimates from molecular dating, indicating that corals and Symbiodinium originated and diversified together ∼140–200 mya. Divergent Symbiodinium “clades” are now partitioned into multiple genera, better reflecting their long evolutionary history.
AB - The advent of molecular data has transformed the science of organizing and studying life on Earth. Genetics-based evidence provides fundamental insights into the diversity, ecology, and origins of many biological systems, including the mutualisms between metazoan hosts and their micro-algal partners. A well-known example is the dinoflagellate endosymbionts (“zooxanthellae”) that power the growth of stony corals and coral reef ecosystems. Once assumed to encompass a single panmictic species, genetic evidence has revealed a divergent and rich diversity within the zooxanthella genus Symbiodinium. Despite decades of reporting on the significance of this diversity, the formal systematics of these eukaryotic microbes have not kept pace, and a major revision is long overdue. With the consideration of molecular, morphological, physiological, and ecological data, we propose that evolutionarily divergent Symbiodinium “clades” are equivalent to genera in the family Symbiodiniaceae, and we provide formal descriptions for seven of them. Additionally, we recalibrate the molecular clock for the group and amend the date for the earliest diversification of this family to the middle of the Mesozoic Era (∼160 mya). This timing corresponds with the adaptive radiation of analogs to modern shallow-water stony corals during the Jurassic Period and connects the rise of these symbiotic dinoflagellates with the emergence and evolutionary success of reef-building corals. This improved framework acknowledges the Symbiodiniaceae's long evolutionary history while filling a pronounced taxonomic gap. Its adoption will facilitate scientific dialog and future research on the physiology, ecology, and evolution of these important micro-algae. Symbiodinium are micro-algal symbionts of reef-building corals. LaJeunesse et al. report new estimates from molecular dating, indicating that corals and Symbiodinium originated and diversified together ∼140–200 mya. Divergent Symbiodinium “clades” are now partitioned into multiple genera, better reflecting their long evolutionary history.
UR - http://www.scopus.com/inward/record.url?scp=85051486726&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85051486726&partnerID=8YFLogxK
U2 - 10.1016/j.cub.2018.07.008
DO - 10.1016/j.cub.2018.07.008
M3 - Article
C2 - 30100341
AN - SCOPUS:85051486726
SN - 0960-9822
VL - 28
SP - 2570-2580.e6
JO - Current Biology
JF - Current Biology
IS - 16
ER -