TY - JOUR
T1 - Tal1/SCL binding to pericentromeric DNA represses transcription
AU - Wen, Jie
AU - Huang, Suming
AU - Pack, Svetlana D.
AU - Yu, Xiaobing
AU - Brandt, Stephen J.
AU - Noguchi, Constance Tom
PY - 2005/4/1
Y1 - 2005/4/1
N2 - Tal1/SCL is a basic helix-loop-helix transcription factor critical for normal hematopoiesis. To understand the mechanisms underlying transcriptional regulation by Tal1/SCL, we combined an in vitro DNA binding strategy and an in vivo chromatin immunoprecipitation analysis to search for Tal1/SCL target regions in K562 erythroleukemia cells. A 0.4-kb genomic DNA clone containing two Tal1/SCL binding E-boxes and GATA- and SATB1-binding motifs (EEGS) was identified that localized to the pericentromeric region with high homology to satellite 2 DNA. Pericentric DNA is related to heterochromatin and gene inactivation. We found that Tal1/SCL could complex with the histone H3 lysine 9 (H3K9)-specific methyltransferase Suv39H1. Binding of Tal1/SCL to EEGS chromatin correlated with hypermethylation of H3K9 and the association of heterochromatin protein HP1 to this region. In Rep4 reporter gene assays, EEGS affected repression in a manner dependent on the expression level of Tal1/SCL that was accompanied by increased H3K9 methylation in chromatin associated with EEGS and a linked promoter. A specific histone deacetylase inhibitor, trichostatin A, relieved Tal1/SCL-mediated repression by EEGS. In addition, SATB1 bound EEGS chromatin and promoted Tal1/SCL EEGS-dependent repression. We expand the list of potential interacting partners for Tal1/SCL by demonstrating direct associations of Tal1/SCL with SATB1 and with Suv39H1. These results reveal a novel mechanism of action for Tal1/SCL and implicate heterochromatin-like silencing via a cis-acting binding motif for transcriptional repression.
AB - Tal1/SCL is a basic helix-loop-helix transcription factor critical for normal hematopoiesis. To understand the mechanisms underlying transcriptional regulation by Tal1/SCL, we combined an in vitro DNA binding strategy and an in vivo chromatin immunoprecipitation analysis to search for Tal1/SCL target regions in K562 erythroleukemia cells. A 0.4-kb genomic DNA clone containing two Tal1/SCL binding E-boxes and GATA- and SATB1-binding motifs (EEGS) was identified that localized to the pericentromeric region with high homology to satellite 2 DNA. Pericentric DNA is related to heterochromatin and gene inactivation. We found that Tal1/SCL could complex with the histone H3 lysine 9 (H3K9)-specific methyltransferase Suv39H1. Binding of Tal1/SCL to EEGS chromatin correlated with hypermethylation of H3K9 and the association of heterochromatin protein HP1 to this region. In Rep4 reporter gene assays, EEGS affected repression in a manner dependent on the expression level of Tal1/SCL that was accompanied by increased H3K9 methylation in chromatin associated with EEGS and a linked promoter. A specific histone deacetylase inhibitor, trichostatin A, relieved Tal1/SCL-mediated repression by EEGS. In addition, SATB1 bound EEGS chromatin and promoted Tal1/SCL EEGS-dependent repression. We expand the list of potential interacting partners for Tal1/SCL by demonstrating direct associations of Tal1/SCL with SATB1 and with Suv39H1. These results reveal a novel mechanism of action for Tal1/SCL and implicate heterochromatin-like silencing via a cis-acting binding motif for transcriptional repression.
UR - http://www.scopus.com/inward/record.url?scp=16844362280&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=16844362280&partnerID=8YFLogxK
U2 - 10.1074/jbc.M412721200
DO - 10.1074/jbc.M412721200
M3 - Article
C2 - 15677454
AN - SCOPUS:16844362280
SN - 0021-9258
VL - 280
SP - 12956
EP - 12966
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 13
ER -