Target detection and target type & motion classification: Comparison of feature extraction algorithms

Yue Li, Asok Ray, Thomas A. Wettergren

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

This paper addresses sensor network-based surveillance of target detection and target type & motion classification. The performance of target detection and classification could be compromised (e.g., due to high rates of false alarm and misclassification), because of inadequacies of feature extraction from (possibly noisy) sensor data and subsequent pattern classification over the network. A feature extraction algorithm, called symbolic dynamic filtering (SDF), is investigated for solving the target detection & classification problem. In this paper, the performance of SDF is compared with two commonly used feature extractors, namely, Cepstrum and principal component analysis (PCA)). Each of these three feature extractors is executed in conjunction with three well-known pattern classifiers, namely, k-nearest neighbor (k-NN), support vector machine (SVM), and sparse representation classification (SRC). Results of numerical simulation are presented based on a dynamic model of target maneuvering and passive sonar sensing in the ocean environment. These results show that SDF has a consistently superior performance for all tasks - target detection and target type & motion classification.

Original languageEnglish (US)
Title of host publication2014 American Control Conference, ACC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1132-1137
Number of pages6
ISBN (Print)9781479932726
DOIs
StatePublished - 2014
Event2014 American Control Conference, ACC 2014 - Portland, OR, United States
Duration: Jun 4 2014Jun 6 2014

Publication series

NameProceedings of the American Control Conference
ISSN (Print)0743-1619

Other

Other2014 American Control Conference, ACC 2014
Country/TerritoryUnited States
CityPortland, OR
Period6/4/146/6/14

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Target detection and target type & motion classification: Comparison of feature extraction algorithms'. Together they form a unique fingerprint.

Cite this