TY - GEN
T1 - Target shape optimization of functionally graded shape memory alloy compliant mechanism
AU - Jovanova, Jovana
AU - Frecker, Mary
AU - Hamilton, Reginald F.
AU - Palmer, Todd A.
N1 - Publisher Copyright:
Copyright © 2016 by ASME.
PY - 2016
Y1 - 2016
N2 - Nickel Titanium (NiTi) shape memory alloys (SMAs) exhibit shape memory and/or superelastic properties, enabling them to demonstrate multifunctionality by engineering microstructural and compositional gradients at selected locations. This paper focuses on the design optimization of NiTi compliant mechanisms resulting in single-piece structures with functionally graded properties, based on user-defined target shape matching approach. The compositionally graded zones within the structures will exhibit an on demand superelastic effect (SE) response, exploiting the tailored mechanical behavior of the structure. The functional grading has been approximated by allowing the geometry and the superelastic properties of each zone to vary. The superelastic phenomenon has been taken into consideration using a standard nonlinear SMA material model, focusing only on 2 regions of interest: the linear region of higher Young's modulus of elasticity and the superelastic region with significantly lower Young's modulus of elasticity. Due to an outside load, the graded zones reach the critical stress at different stages based on their composition, position and geometry, allowing the structure morphing. This concept has been used to optimize the structures' geometry and mechanical properties to match a user-defined target shape structure. A multi-objective evolutionary algorithm (NSGA II - Non-dominated Sorting Genetic Algorithm) for constrained optimization of the structure's mechanical properties and geometry has been developed and implemented.
AB - Nickel Titanium (NiTi) shape memory alloys (SMAs) exhibit shape memory and/or superelastic properties, enabling them to demonstrate multifunctionality by engineering microstructural and compositional gradients at selected locations. This paper focuses on the design optimization of NiTi compliant mechanisms resulting in single-piece structures with functionally graded properties, based on user-defined target shape matching approach. The compositionally graded zones within the structures will exhibit an on demand superelastic effect (SE) response, exploiting the tailored mechanical behavior of the structure. The functional grading has been approximated by allowing the geometry and the superelastic properties of each zone to vary. The superelastic phenomenon has been taken into consideration using a standard nonlinear SMA material model, focusing only on 2 regions of interest: the linear region of higher Young's modulus of elasticity and the superelastic region with significantly lower Young's modulus of elasticity. Due to an outside load, the graded zones reach the critical stress at different stages based on their composition, position and geometry, allowing the structure morphing. This concept has been used to optimize the structures' geometry and mechanical properties to match a user-defined target shape structure. A multi-objective evolutionary algorithm (NSGA II - Non-dominated Sorting Genetic Algorithm) for constrained optimization of the structure's mechanical properties and geometry has been developed and implemented.
UR - http://www.scopus.com/inward/record.url?scp=85013909476&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85013909476&partnerID=8YFLogxK
U2 - 10.1115/SMASIS2016-9070
DO - 10.1115/SMASIS2016-9070
M3 - Conference contribution
AN - SCOPUS:85013909476
T3 - ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2016
BT - Modeling, Simulation and Control; Bio-Inspired Smart Materials and Systems; Energy Harvesting
PB - American Society of Mechanical Engineers
T2 - ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2016
Y2 - 28 September 2016 through 30 September 2016
ER -