TY - GEN
T1 - Targeted Data-driven Regularization for Out-of-Distribution Generalization
AU - Kamani, Mohammad Mahdi
AU - Farhang, Sadegh
AU - Mahdavi, Mehrdad
AU - Wang, James Z.
N1 - Publisher Copyright:
© 2020 ACM.
PY - 2020/8/23
Y1 - 2020/8/23
N2 - Due to biases introduced by large real-world datasets, deviations of deep learning models from their expected behavior on out-of-distribution test data are worrisome. Especially when data come from imbalanced or heavy-tailed label distributions, or minority groups of a sensitive feature. Classical approaches to address these biases are mostly data- or application-dependent, hence are burdensome to tune. Some meta-learning approaches, on the other hand, aim to learn hyperparameters in the learning process using different objective functions on training and validation data. However, these methods suffer from high computational complexity and are not scalable to large datasets. In this paper, we propose a unified data-driven regularization approach to learn a generalizable model from biased data. The proposed framework, named as targeted data-driven regularization (TDR), is model- and dataset-agnostic, and employs a target dataset that resembles the desired nature of test data in order to guide the learning process in a coupled manner. We cast the problem as a bilevel optimization and propose an efficient stochastic gradient descent based method to solve it. The framework can be utilized to alleviate various types of biases in real-world applications. We empirically show, on both synthetic and real-world datasets, the superior performance of TDR for resolving issues stem from these biases.
AB - Due to biases introduced by large real-world datasets, deviations of deep learning models from their expected behavior on out-of-distribution test data are worrisome. Especially when data come from imbalanced or heavy-tailed label distributions, or minority groups of a sensitive feature. Classical approaches to address these biases are mostly data- or application-dependent, hence are burdensome to tune. Some meta-learning approaches, on the other hand, aim to learn hyperparameters in the learning process using different objective functions on training and validation data. However, these methods suffer from high computational complexity and are not scalable to large datasets. In this paper, we propose a unified data-driven regularization approach to learn a generalizable model from biased data. The proposed framework, named as targeted data-driven regularization (TDR), is model- and dataset-agnostic, and employs a target dataset that resembles the desired nature of test data in order to guide the learning process in a coupled manner. We cast the problem as a bilevel optimization and propose an efficient stochastic gradient descent based method to solve it. The framework can be utilized to alleviate various types of biases in real-world applications. We empirically show, on both synthetic and real-world datasets, the superior performance of TDR for resolving issues stem from these biases.
UR - http://www.scopus.com/inward/record.url?scp=85090422431&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85090422431&partnerID=8YFLogxK
U2 - 10.1145/3394486.3403131
DO - 10.1145/3394486.3403131
M3 - Conference contribution
AN - SCOPUS:85090422431
T3 - Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
SP - 882
EP - 891
BT - KDD 2020 - Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PB - Association for Computing Machinery
T2 - 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2020
Y2 - 23 August 2020 through 27 August 2020
ER -