TY - JOUR
T1 - Targeting of histone acetyltransferase p300 by cyclopentenone prostaglandin Δ 12-PGJ 2 through covalent binding to Cys 1438
AU - Ravindra, Kodihalli C.
AU - Narayan, Vivek
AU - Lushington, Gerald H.
AU - Peterson, Blake R.
AU - Prabhu, K. Sandeep
PY - 2012/2/20
Y1 - 2012/2/20
N2 - Inhibitors of histone acetyltransferases (HATs) are perceived to treat diseases like cancer, neurodegeneration, and AIDS. On the basis of previous studies, we hypothesized that Cys 1438 in the substrate binding site could be targeted by Δ 12-prostaglandin J 2 (Δ 12-PGJ 2), a cyclopentenone prostaglandin (CyPG) derived from PGD 2. We demonstrate here the ability of CyPGs to inhibit p300 HAT-dependent acetylation of histone H3. A cell-based assay system clearly showed that the α,β-unsaturation in the cyclopentenone ring of Δ 12-PGJ 2 was crucial for the inhibitory activity, while the 9,10-dihydro-15-deoxy-Δ 12,14-PGJ 2, which lacks the electrophilic carbon (at carbon 9), was ineffective. Molecular docking studies suggested that Δ 12-PGJ 2 places the electrophilic carbon in the cyclopentenone ring well within the vicinity of Cys 1438 of p300 to form a covalent Michael adduct. Site-directed mutagenesis of the p300 HAT domain, peptide competition assay involving p300 wild type and mutant peptides, followed by mass spectrometric analysis confirmed the covalent interaction of Δ 12-PGJ 2 with Cys 1438. (Figure presented) Using biotinylated derivatives of Δ 12-PGJ 2 and 9,10-dihydro-15-deoxy-Δ 12,14-PGJ 2, we demonstrate the covalent interaction of Δ 12-PGJ 2 with the p300 HAT domain, but not the latter. In agreement with the in vitro filter binding assay, CyPGs were also found to inhibit H3 histone acetylation in cell-based assays. In addition, Δ 12-PGJ 2 also inhibited the acetylation of the HIV-1 Tat by recombinant p300 in in vitro assays. This study demonstrates, for the first time, that Δ 12-PGJ 2 inhibits p300 through Michael addition, where α,β-unsaturated carbonyl function is absolutely required for the inhibitory activity.
AB - Inhibitors of histone acetyltransferases (HATs) are perceived to treat diseases like cancer, neurodegeneration, and AIDS. On the basis of previous studies, we hypothesized that Cys 1438 in the substrate binding site could be targeted by Δ 12-prostaglandin J 2 (Δ 12-PGJ 2), a cyclopentenone prostaglandin (CyPG) derived from PGD 2. We demonstrate here the ability of CyPGs to inhibit p300 HAT-dependent acetylation of histone H3. A cell-based assay system clearly showed that the α,β-unsaturation in the cyclopentenone ring of Δ 12-PGJ 2 was crucial for the inhibitory activity, while the 9,10-dihydro-15-deoxy-Δ 12,14-PGJ 2, which lacks the electrophilic carbon (at carbon 9), was ineffective. Molecular docking studies suggested that Δ 12-PGJ 2 places the electrophilic carbon in the cyclopentenone ring well within the vicinity of Cys 1438 of p300 to form a covalent Michael adduct. Site-directed mutagenesis of the p300 HAT domain, peptide competition assay involving p300 wild type and mutant peptides, followed by mass spectrometric analysis confirmed the covalent interaction of Δ 12-PGJ 2 with Cys 1438. (Figure presented) Using biotinylated derivatives of Δ 12-PGJ 2 and 9,10-dihydro-15-deoxy-Δ 12,14-PGJ 2, we demonstrate the covalent interaction of Δ 12-PGJ 2 with the p300 HAT domain, but not the latter. In agreement with the in vitro filter binding assay, CyPGs were also found to inhibit H3 histone acetylation in cell-based assays. In addition, Δ 12-PGJ 2 also inhibited the acetylation of the HIV-1 Tat by recombinant p300 in in vitro assays. This study demonstrates, for the first time, that Δ 12-PGJ 2 inhibits p300 through Michael addition, where α,β-unsaturated carbonyl function is absolutely required for the inhibitory activity.
UR - http://www.scopus.com/inward/record.url?scp=84859756203&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84859756203&partnerID=8YFLogxK
U2 - 10.1021/tx200383c
DO - 10.1021/tx200383c
M3 - Article
C2 - 22141352
AN - SCOPUS:84859756203
SN - 0893-228X
VL - 25
SP - 337
EP - 347
JO - Chemical research in toxicology
JF - Chemical research in toxicology
IS - 2
ER -