TY - GEN
T1 - Team activity analysis and recognition based on kinect depth map and optical imagery techniques
AU - Elangovan, Vinayak
AU - Bandaru, Vinod K.
AU - Shirkhodaie, Amir
PY - 2012
Y1 - 2012
N2 - Kinect cameras produce low-cost depth map video streams applicable for conventional surveillance systems. However, commonly applied image processing techniques are not directly applicable for depth map video processing. Kinect depth map images contain range measurement of objects at expense of having spatial features of objects suppressed. For example, typical objects' attributes such as textures, color tones, intensity, and other characteristic attributes cannot be fully realized by processing depth map imagery. In this paper, we demonstrate application of Kinect depth map and optical imagery for characterization of indoor and outdoor group activities. A Casual-Events State Inference (CESI) technique is proposed for spatiotemporal recognition and reasoning of group activities. CESI uses an ontological scheme for representation of casual distinctiveness of a priori known group activities. By tracking and serializing distinctive atomic group activities, CESI allows discovery of more complex group activities. A Modified Sequential Hidden Markov Model (MS-HMM) is implemented for trail analysis of atomic events representing correlated group activities. CESI reasons about five levels of group activities including: Merging, Planning, Cooperation, Coordination, and Dispersion. In this paper, we present results of capability of CESI approach for characterization of group activities taking place both in indoor and outdoor. Based on spatiotemporal pattern matching of atomic activities representing a known group activities, the CESI is able to discriminate suspicious group activity from normal activities. This paper also presents technical details of imagery techniques implemented for detection, tracking, and characterization of atomic events based on Kinect depth map and optical imagery data sets. Various experimental scenarios in indoors and outdoors (e.g. loading and unloading of objects, human-vehicle interactions etc.,) are carried to demonstrate effectiveness and efficiency of the proposed model for characterization of distinctive group activities.
AB - Kinect cameras produce low-cost depth map video streams applicable for conventional surveillance systems. However, commonly applied image processing techniques are not directly applicable for depth map video processing. Kinect depth map images contain range measurement of objects at expense of having spatial features of objects suppressed. For example, typical objects' attributes such as textures, color tones, intensity, and other characteristic attributes cannot be fully realized by processing depth map imagery. In this paper, we demonstrate application of Kinect depth map and optical imagery for characterization of indoor and outdoor group activities. A Casual-Events State Inference (CESI) technique is proposed for spatiotemporal recognition and reasoning of group activities. CESI uses an ontological scheme for representation of casual distinctiveness of a priori known group activities. By tracking and serializing distinctive atomic group activities, CESI allows discovery of more complex group activities. A Modified Sequential Hidden Markov Model (MS-HMM) is implemented for trail analysis of atomic events representing correlated group activities. CESI reasons about five levels of group activities including: Merging, Planning, Cooperation, Coordination, and Dispersion. In this paper, we present results of capability of CESI approach for characterization of group activities taking place both in indoor and outdoor. Based on spatiotemporal pattern matching of atomic activities representing a known group activities, the CESI is able to discriminate suspicious group activity from normal activities. This paper also presents technical details of imagery techniques implemented for detection, tracking, and characterization of atomic events based on Kinect depth map and optical imagery data sets. Various experimental scenarios in indoors and outdoors (e.g. loading and unloading of objects, human-vehicle interactions etc.,) are carried to demonstrate effectiveness and efficiency of the proposed model for characterization of distinctive group activities.
UR - http://www.scopus.com/inward/record.url?scp=84862901459&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84862901459&partnerID=8YFLogxK
U2 - 10.1117/12.919946
DO - 10.1117/12.919946
M3 - Conference contribution
AN - SCOPUS:84862901459
SN - 9780819490704
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Signal Processing, Sensor Fusion, and Target Recognition XXI
T2 - Signal Processing, Sensor Fusion, and Target Recognition XXI
Y2 - 23 April 2012 through 25 April 2012
ER -