TY - JOUR
T1 - Temperature and nitrogen effects on phosphorus uptake by agricultural stream-bed sediments
AU - McDowell, Richard W.
AU - Elkin, Kyle R.
AU - Kleinman, Peter J.A.
N1 - Publisher Copyright:
© American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. 5585 Guilford Rd., Madison, WI 53711 USA. All rights reserved.
PY - 2017
Y1 - 2017
N2 - Climate change will likely increase the growing season, temperatures, and ratio of nitrogen (N) to phosphorus (P) loss from land to water. However, it is unknown how these factors influence P concentrations in streams. We sought to evaluate differences in biotic and abiotic processes affecting stream sediment P dynamics under different temperature and N-enrichment regimes. Three sediments of varying P composition and sorption characteristics were placed into a fluvarium. Synthetic runoff water, with or without added N, was added to the flume's reservoir, and the solution was maintained at 19 or 26°C. Water and sediment samples were taken with time since runoff was introduced. The rate and magnitude of P uptake by sediment was greater at 19°C compared with 26°C, and also when N was added compared with no N added. Analysis of sediment samples indicated that P uptake via abiotic processes was greater at 19 than at 26°C. The addition of N stimulated P uptake by the microbial biomass at 19°C, but microbial uptake was potentially inhibited at 26°C. Because microbial biomass is a temporary store of P, these data suggest that more P may be available with increasing temperatures during the growing season, especially under baseflow, implying that strategies to mitigate P losses from land to water should be strengthened to prevent potential water quality impairment.
AB - Climate change will likely increase the growing season, temperatures, and ratio of nitrogen (N) to phosphorus (P) loss from land to water. However, it is unknown how these factors influence P concentrations in streams. We sought to evaluate differences in biotic and abiotic processes affecting stream sediment P dynamics under different temperature and N-enrichment regimes. Three sediments of varying P composition and sorption characteristics were placed into a fluvarium. Synthetic runoff water, with or without added N, was added to the flume's reservoir, and the solution was maintained at 19 or 26°C. Water and sediment samples were taken with time since runoff was introduced. The rate and magnitude of P uptake by sediment was greater at 19°C compared with 26°C, and also when N was added compared with no N added. Analysis of sediment samples indicated that P uptake via abiotic processes was greater at 19 than at 26°C. The addition of N stimulated P uptake by the microbial biomass at 19°C, but microbial uptake was potentially inhibited at 26°C. Because microbial biomass is a temporary store of P, these data suggest that more P may be available with increasing temperatures during the growing season, especially under baseflow, implying that strategies to mitigate P losses from land to water should be strengthened to prevent potential water quality impairment.
UR - http://www.scopus.com/inward/record.url?scp=85015922473&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85015922473&partnerID=8YFLogxK
U2 - 10.2134/jeq2016.09.0352
DO - 10.2134/jeq2016.09.0352
M3 - Article
C2 - 28380551
AN - SCOPUS:85015922473
SN - 0047-2425
VL - 46
SP - 295
EP - 301
JO - Journal of Environmental Quality
JF - Journal of Environmental Quality
IS - 2
ER -