Templating-induced graphitization of novolac using graphene oxide additives

Sandra N. Ike, Randy Vander Wal

Research output: Contribution to journalArticlepeer-review

Abstract

Increasing graphite demand for energy storage applications creates the need to make graphite using precursors and processes that are affordable and friendly to the environment. Non-graphitizing precursors such as biomass or polymers are known for their low cost and sustainability; therefore, graphitizing them will be an accomplishment. In this work, a process of converting a non-graphitizing precursor, phenolic resin novolac (N), into a graphitic carbon is presented. This was achieved by the addition of five additives categorized as graphene oxide (GO) and its derivatives with varied oxygen concentrations. The hypothesis is that the additives act as templates that promote matrix aromatic alignment to their basal planes during carbonization (physical templating) in addition to forming radical sites that bond to the decomposing matrix (chemical templating). Results showed that the addition of reduced graphene oxide (RGO) additives of approximately 15.4 at.(%) oxygen content to the novolac matrix (RGO-N) show the best graphitic quality. In contrast, the addition of GO additive of twice or more oxygen content ≥ 30.8 at.(%) to the novolac matrix (GO-N) led to poor graphitic quality. This suggests that there is an optimum amount of oxygen content in GO additives needed to induce graphitization of the novolac matrix.

Original languageEnglish (US)
Article number100388
JournalCarbon Trends
Volume16
DOIs
StatePublished - Sep 2024

All Science Journal Classification (ASJC) codes

  • Chemistry (miscellaneous)
  • Materials Science (miscellaneous)
  • Materials Chemistry

Cite this