Abstract
(RE)Ba2Cu3O7-x (REBCO) conductors have the potential to enable a wide range of superconducting applications over a range of temperatures and magnetic fields (Vincent et al 2013 IEEE Trans. Appl. Supercond. 23 5700805), yet AC applications and devices with a charge/discharge cycle may be limited by the conductor fatigue properties. Here the fatigue behavior of GdBa2Cu3O7-x (GdBCO) conductors grown by reactive co-evaporation on stainless-steel substrates is reported for axial tensile strains, ϵ, up to 0.5% and 100 000 cycles. Failure mechanisms are investigated via microstructural studies and compared with a commercially available IBAD/MOCVD REBCO conductor. Results show that GdBCO/stainless-steel conductors retain their transport critical current for 10 000 cycles at ϵ = 0.35% and ϵ = 0.45%, and for 1000 cycles at ϵ = 0.50%. The main cause of fatigue degradation in GdBCO conductors is crack propagation and delamination that initiates at the edge of the conductor due to manufacturing defects.
Original language | English (US) |
---|---|
Article number | 045013 |
Journal | Superconductor Science and Technology |
Volume | 30 |
Issue number | 4 |
DOIs | |
State | Published - Mar 9 2017 |
All Science Journal Classification (ASJC) codes
- Ceramics and Composites
- Condensed Matter Physics
- Metals and Alloys
- Electrical and Electronic Engineering
- Materials Chemistry