Tensor sparsity for classifying low-frequency ultra-wideband (UWB) SAR imagery

Tiep H. Vu, Lam Nguyen, Calvin Le, Vishal Monga

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Although a lot of progress has been made over the years, one critical challenge still facing low-frequency (UHF to L-band) ultra-wideband (UWB) synthetic aperture radar (SAR) technology is the discrimination of buried and obscured targets of interest from other natural and manmade clutter objects in the scene. The key issues are i) low-resolution SAR imagery for this frequency band, ii) targets of interests being typically small compared to the radar signal wavelengths, iii) targets having low radar cross sections (RCS), and iv) very noisy SAR imagery (e.g. target responses buried in responses from cluttered environment). In this paper, we consider the problem of discriminating and classifying buried targets of interest (buried metal and plastic mines, 155-mm unexploded ordinance [UXO], etc.) from other natural and manmade clutter objects (soda can, rocks, etc.) in the presence of noisy responses from the rough ground surfaces for low-frequency UWB 2-D SAR images. We generalize the traditional sparse representation-based classification (SRC) to a model with capability of using the information of the shared class, and implement multichannel classification problems by exploiting structures of sparse coefficients using various techniques. Here, we employ an electromagnetic (EM) SAR database generated using the finite-difference, time-domain (FDTD) software, which is based on a full-wave computational EM method.

Original languageEnglish (US)
Title of host publication2017 IEEE Radar Conference, RadarConf 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages557-562
Number of pages6
ISBN (Electronic)9781467388238
DOIs
StatePublished - Jun 7 2017
Event2017 IEEE Radar Conference, RadarConf 2017 - Seattle, United States
Duration: May 8 2017May 12 2017

Publication series

Name2017 IEEE Radar Conference, RadarConf 2017

Other

Other2017 IEEE Radar Conference, RadarConf 2017
Country/TerritoryUnited States
CitySeattle
Period5/8/175/12/17

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Signal Processing
  • Instrumentation

Fingerprint

Dive into the research topics of 'Tensor sparsity for classifying low-frequency ultra-wideband (UWB) SAR imagery'. Together they form a unique fingerprint.

Cite this