TY - JOUR
T1 - Terrestrial laser scanner intensity correction for the incidence angle effect on surfaces with different colours and sheens
AU - Bolkas, D.
N1 - Funding Information:
Undergraduate student Aaron Martinez is acknowledged for his aid in the laser scanning data collection. This research study was supported and funded by the Scholarly Activities Committee of the Pennsylvania State University, Wilkes-Barre Campus. Also, special thanks go to Mr Frank Lenik from Leica Geosystems for providing the Leica Scanstation P40 and Cyclone software.
Funding Information:
This research study was supported and funded by the Scholarly Activities Committee of the Pennsylvania State University, Wilkes-Barre Campus.
Publisher Copyright:
© 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group.
Copyright:
Copyright 2019 Elsevier B.V., All rights reserved.
PY - 2019/9/17
Y1 - 2019/9/17
N2 - Laser scanning intensity captures information about the reflectance of target-surfaces and is used for a variety of applications such as data registration, classification, object detection and recognition. To enhance its utility, intensity values often undergo a correction process, which reduces the influence of nuisance parameters on recorded intensity (often range and incidence angle). This study applies and tests the Torrance-Sparrow model to correct intensity for the incidence angle effect in terrestrial laser scanning. Main components of the Torrance-Sparrow model are the geometrical attenuation (G) and microfacet distribution functions (D). Four models of geometrical attenuation and microfacet distribution functions are evaluated, namely, (i) Beckmann, (ii) Trowbridge-Reitz, (iii) GGX, and (iv) shifted gamma distribution (SGD). These models provide different derivations of the functions G and D, which estimate parameters necessary for the Torrance-Sparrow model. Target-surfaces scanned from various incidence angles are used for the assessment. These are painted with eight different colours (white, yellow, red, green, blue, grey, brown, and black) and two sheens (flat and semi-gloss), which create different reflection characteristics (diffuse and specular). Numerical and visual evaluations show that all four models manage to model the specular reflection component of the semi-gloss sheen target-surfaces for all tested colours. However, in flat-sheen surfaces, the Beckmann and SGD models show inferior modelling than GGX and Trowbridge-Reitz for brown, grey, and black colours. In addition, a relative comparison of the roughness parameters and Fresnel factors showed that only the Trowbridge-Reitz model produced reasonable values, based on encountered surface characteristics. Application of the Trowbridge-Reitz model in independent point-cloud data shows how intensity values can be corrected for the incidence angle effect in real cases.
AB - Laser scanning intensity captures information about the reflectance of target-surfaces and is used for a variety of applications such as data registration, classification, object detection and recognition. To enhance its utility, intensity values often undergo a correction process, which reduces the influence of nuisance parameters on recorded intensity (often range and incidence angle). This study applies and tests the Torrance-Sparrow model to correct intensity for the incidence angle effect in terrestrial laser scanning. Main components of the Torrance-Sparrow model are the geometrical attenuation (G) and microfacet distribution functions (D). Four models of geometrical attenuation and microfacet distribution functions are evaluated, namely, (i) Beckmann, (ii) Trowbridge-Reitz, (iii) GGX, and (iv) shifted gamma distribution (SGD). These models provide different derivations of the functions G and D, which estimate parameters necessary for the Torrance-Sparrow model. Target-surfaces scanned from various incidence angles are used for the assessment. These are painted with eight different colours (white, yellow, red, green, blue, grey, brown, and black) and two sheens (flat and semi-gloss), which create different reflection characteristics (diffuse and specular). Numerical and visual evaluations show that all four models manage to model the specular reflection component of the semi-gloss sheen target-surfaces for all tested colours. However, in flat-sheen surfaces, the Beckmann and SGD models show inferior modelling than GGX and Trowbridge-Reitz for brown, grey, and black colours. In addition, a relative comparison of the roughness parameters and Fresnel factors showed that only the Trowbridge-Reitz model produced reasonable values, based on encountered surface characteristics. Application of the Trowbridge-Reitz model in independent point-cloud data shows how intensity values can be corrected for the incidence angle effect in real cases.
UR - http://www.scopus.com/inward/record.url?scp=85064504216&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85064504216&partnerID=8YFLogxK
U2 - 10.1080/01431161.2019.1601283
DO - 10.1080/01431161.2019.1601283
M3 - Article
AN - SCOPUS:85064504216
SN - 0143-1161
VL - 40
SP - 7169
EP - 7189
JO - International Journal of Remote Sensing
JF - International Journal of Remote Sensing
IS - 18
ER -