Abstract
Understanding the electromechanical breakdown mechanisms of polycrystalline ceramics is critical to texture engineering for high-energy-density dielectric ceramics. Here, an electromechanical breakdown model is developed to fundamentally understand the electrostrictive effect on the breakdown behavior of textured ceramics. Taking the Na0.5Bi0.5TiO3-Sr0.7Bi0.2TiO3 ceramic as an example, it is found that the breakdown process significantly depends on the local electric/strain energy distributions in polycrystalline ceramics, and reasonable texture design could greatly alleviate electromechanical breakdown. Then, high-throughput simulations are performed to establish the mapping relationship between the breakdown strength and different intrinsic/extrinsic variables. Finally, machine learning is conducted on the database from the high-throughput simulations to obtain the mathematical expression for semi-quantitatively predicting the breakdown strength, based on which some basic principles of texture design are proposed. The present work provides a computational understanding of the electromechanical breakdown behavior in textured ceramics and is expected to stimulate more theoretical and experimental efforts in designing textured ceramics with reliable electromechanical performances.
Original language | English (US) |
---|---|
Article number | 2300320 |
Journal | Advanced Science |
Volume | 10 |
Issue number | 16 |
DOIs | |
State | Published - Jun 2 2023 |
All Science Journal Classification (ASJC) codes
- Medicine (miscellaneous)
- General Chemical Engineering
- General Materials Science
- Biochemistry, Genetics and Molecular Biology (miscellaneous)
- General Engineering
- General Physics and Astronomy