TY - JOUR
T1 - Formality theorem for g-manifolds
AU - Liao, Hsuan Yi
AU - Stiénon, Mathieu
AU - Xu, Ping
N1 - Publisher Copyright:
© 2017 Académie des sciences
PY - 2017/5
Y1 - 2017/5
N2 - With any g-manifold M are associated two dglas tot(Λ•g∨⊗kTpoly•(M)) and tot(Λ•g∨⊗kDpoly•(M)), whose cohomologies HCE•(g,Tpoly•(M)→0Tpoly•+1(M)) and HCE•(g,Dpoly•(M)→dHDpoly•+1(M)) are Gerstenhaber algebras. We establish a formality theorem for g-manifolds: there exists an L∞ quasi-isomorphism Φ:tot(Λ•g∨⊗kTpoly•(M))→tot(Λ•g∨⊗kDpoly•(M)) whose first ‘Taylor coefficient’ (1) is equal to the Hochschild–Kostant–Rosenberg map twisted by the square root of the Todd cocycle of the g-manifold M, and (2) induces an isomorphism of Gerstenhaber algebras on the level of cohomology. Consequently, the Hochschild–Kostant–Rosenberg map twisted by the square root of the Todd class of the g-manifold M is an isomorphism of Gerstenhaber algebras from HCE•(g,Tpoly•(M)→0Tpoly•+1(M)) to HCE•(g,Dpoly•(M)→dHDpoly•+1(M)).
AB - With any g-manifold M are associated two dglas tot(Λ•g∨⊗kTpoly•(M)) and tot(Λ•g∨⊗kDpoly•(M)), whose cohomologies HCE•(g,Tpoly•(M)→0Tpoly•+1(M)) and HCE•(g,Dpoly•(M)→dHDpoly•+1(M)) are Gerstenhaber algebras. We establish a formality theorem for g-manifolds: there exists an L∞ quasi-isomorphism Φ:tot(Λ•g∨⊗kTpoly•(M))→tot(Λ•g∨⊗kDpoly•(M)) whose first ‘Taylor coefficient’ (1) is equal to the Hochschild–Kostant–Rosenberg map twisted by the square root of the Todd cocycle of the g-manifold M, and (2) induces an isomorphism of Gerstenhaber algebras on the level of cohomology. Consequently, the Hochschild–Kostant–Rosenberg map twisted by the square root of the Todd class of the g-manifold M is an isomorphism of Gerstenhaber algebras from HCE•(g,Tpoly•(M)→0Tpoly•+1(M)) to HCE•(g,Dpoly•(M)→dHDpoly•+1(M)).
UR - http://www.scopus.com/inward/record.url?scp=85016565036&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85016565036&partnerID=8YFLogxK
U2 - 10.1016/j.crma.2017.03.008
DO - 10.1016/j.crma.2017.03.008
M3 - Article
AN - SCOPUS:85016565036
SN - 1631-073X
VL - 355
SP - 582
EP - 589
JO - Comptes Rendus Mathematique
JF - Comptes Rendus Mathematique
IS - 5
ER -