TY - JOUR
T1 - The A30P α-synuclein mutation decreases subventricular zone proliferation
AU - Zhang, Xue Ming
AU - Anwar, Sabina
AU - Kim, Yongsoo
AU - Brown, Jennifer
AU - Comte, Isabelle
AU - Cai, Huan
AU - Cai, Ning Ning
AU - Wade-Martins, Richard
AU - Szele, Francis G.
N1 - Funding Information:
The authors thank Christopher Young, Rachel E. James and Zheng-Zhu Wang for their technical help. We are also grateful to Professor Ziyi Li for financial support in the BrdU experiments.
Publisher Copyright:
© 2019 The Author(s).
PY - 2019/7/15
Y1 - 2019/7/15
N2 - Parkinson's disease (PD) is associated with olfactory defects in addition to dopaminergic degeneration. Dopaminergic signalling is necessary for subventricular zone (SVZ) proliferation and olfactory bulb (OB) neurogenesis. Alpha-synuclein (α-syn or Snca) modulates dopaminergic neurotransmission, and SNCA mutations cause familial PD, but how α-syn and its mutations affect adult neurogenesis is unclear. To address this, we studied a bacterial artificial chromosome transgenic mouse expressing the A30P SNCA familial PD point mutation on an Snca-/- background. We confirmed that the SNCA-A30P transgene recapitulates endogenous α-syn expression patterns and levels by immunohistochemical detection of endogenous α-syn in a wild-type mouse and transgenic SNCA-A30P α-syn protein in the forebrain. The number of SVZ stem cells (BrdU+GFAP+) was decreased in SNCA-A30P mice, whereas proliferating (phospho-histone 3+) cells were decreased in Snca-/- and even more so in SNCA-A30P mice. Similarly, SNCA-A30P mice had fewer Mash1+ transit-amplifying SVZ progenitor cells but Snca-/- mice did not. These data suggest the A30P mutation aggravates the effect of Snca loss in the SVZ. Interestingly, calbindin+ and calretinin (CalR)+ periglomerular neurons were decreased in both Snca-/-, and SNCA-A30P mice but tyrosine hydroxylase+ periglomerular OB neurons were only decreased in Snca-/- mice. Cell death decreased in the OB granule layer of Snca-/- and SNCA-A30P mice. In the same region, CalR+ numbers increased in Snca-/- and SNCA-A30P mice. Thus, α-syn loss and human A30P SNCA decrease SVZ proliferation, cell death in the OB and differentially alter interneuron numbers. Similar disruptions in human neurogenesis may contribute to the olfactory deficits, which are observed in PD.
AB - Parkinson's disease (PD) is associated with olfactory defects in addition to dopaminergic degeneration. Dopaminergic signalling is necessary for subventricular zone (SVZ) proliferation and olfactory bulb (OB) neurogenesis. Alpha-synuclein (α-syn or Snca) modulates dopaminergic neurotransmission, and SNCA mutations cause familial PD, but how α-syn and its mutations affect adult neurogenesis is unclear. To address this, we studied a bacterial artificial chromosome transgenic mouse expressing the A30P SNCA familial PD point mutation on an Snca-/- background. We confirmed that the SNCA-A30P transgene recapitulates endogenous α-syn expression patterns and levels by immunohistochemical detection of endogenous α-syn in a wild-type mouse and transgenic SNCA-A30P α-syn protein in the forebrain. The number of SVZ stem cells (BrdU+GFAP+) was decreased in SNCA-A30P mice, whereas proliferating (phospho-histone 3+) cells were decreased in Snca-/- and even more so in SNCA-A30P mice. Similarly, SNCA-A30P mice had fewer Mash1+ transit-amplifying SVZ progenitor cells but Snca-/- mice did not. These data suggest the A30P mutation aggravates the effect of Snca loss in the SVZ. Interestingly, calbindin+ and calretinin (CalR)+ periglomerular neurons were decreased in both Snca-/-, and SNCA-A30P mice but tyrosine hydroxylase+ periglomerular OB neurons were only decreased in Snca-/- mice. Cell death decreased in the OB granule layer of Snca-/- and SNCA-A30P mice. In the same region, CalR+ numbers increased in Snca-/- and SNCA-A30P mice. Thus, α-syn loss and human A30P SNCA decrease SVZ proliferation, cell death in the OB and differentially alter interneuron numbers. Similar disruptions in human neurogenesis may contribute to the olfactory deficits, which are observed in PD.
UR - http://www.scopus.com/inward/record.url?scp=85068995168&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85068995168&partnerID=8YFLogxK
U2 - 10.1093/hmg/ddz057
DO - 10.1093/hmg/ddz057
M3 - Article
C2 - 31267130
AN - SCOPUS:85068995168
SN - 0964-6906
VL - 28
SP - 2283
EP - 2294
JO - Human molecular genetics
JF - Human molecular genetics
IS - 14
M1 - ddz057
ER -