The active form of Chlamydia trachomatis ribonucleotide reductase R2 protein contains a heterodinuclear Mn(IV)/Fe(III) cluster with S = 1 ground state

Research output: Contribution to journalArticlepeer-review

48 Scopus citations

Abstract

The class I ribonucleotide reductase from Chlamydia trachomatis uses a stable MnIV/FeIII cofactor to initiate nucleotide reduction by a free-radical mechanism. The enzyme provides the first example both of a Mn-dependent ribonucleotide reductase and of a Mn/Fe redox cofactor. In this work, we have used variable-field Mössbauer spectroscopy to demonstrate that the active cofactor has an S = 1 ground state due to antiferromagnetic coupling between the MnIV (SMn = 3/2) and high-spin FeIII (SFe = 5/2) sites.

Original languageEnglish (US)
Pages (from-to)7504-7505
Number of pages2
JournalJournal of the American Chemical Society
Volume129
Issue number24
DOIs
StatePublished - Jun 20 2007

All Science Journal Classification (ASJC) codes

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'The active form of Chlamydia trachomatis ribonucleotide reductase R2 protein contains a heterodinuclear Mn(IV)/Fe(III) cluster with S = 1 ground state'. Together they form a unique fingerprint.

Cite this