Abstract
The architecture of the muscle fascicles, here meaning their lengths and their arrangement relative to one another, has important implications for the force a muscle can produce. Therefore, quantifying this architectural arrangement and understanding the implications of the architecture are important for understanding muscle function in vivo. There were two purposes of this study: (1) to assess, via blunt dissection, the number and the length of all the fascicles comprising the First Dorsal Interosseous (FDI) muscle and (2) to visually identify, via magnetic resonance imaging (MRI), the arrangement of the fascicles comprising the FDI. Simple blunt dissection of all the fascicles comprising four FDI muscles and their subsequent measurement demonstrated that the fascicles comprising the whole muscle were not as long as the muscle belly from which they were extracted. Muscle fascicles are surrounded by connective tissue hence the paths of the fascicles in two whole FDI muscles were identified via MRI by tracking the connective tissue surrounding the fascicles. The fascicles had a spiral pattern along the length of each muscle, within both muscles many of the fascicles were arranged in series with other fascicles. These architectural features of the fascicles of the FDI have important implications for the force-length and force-velocity properties of the whole muscle.
Original language | English (US) |
---|---|
Pages (from-to) | 1174-1180 |
Number of pages | 7 |
Journal | Anatomical Record |
Volume | 295 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2012 |
All Science Journal Classification (ASJC) codes
- Anatomy
- Biotechnology
- Histology
- Ecology, Evolution, Behavior and Systematics