TY - JOUR
T1 - The association of lipophilic phospholipids with native bovine casein micelles in skim milk
T2 - Effect of lactation stage and casein micelle size
AU - Cheema, M.
AU - Smith, P. B.
AU - Patterson, A. D.
AU - Hristov, A.
AU - Harte, F. M.
N1 - Publisher Copyright:
© 2018 American Dairy Science Association
PY - 2018/10
Y1 - 2018/10
N2 - A known biological role of casein micelles is to transport calcium from mother to young and provide amino acids for growth and development. Previous reports demonstrated that modified casein micelles can be used to transport and deliver hydrophobic probes. In this study, the distribution of lipid-soluble phospholipids, including sphingomyelins (SM) and phosphatidylcholines (PC), was quantified in whole raw milk, skim raw milk, and casein micelles of various sizes during early, mid, and late lactation stages. Low-pressure size exclusion chromatography was used to separate casein micelles by size, followed by hydrophobic extraction and liquid chromatography–mass spectrometry for the quantification of PC and SM. Results showed that the SM d18:1/23:0, d18:1/22:0, d18:1/16:0, d16:1/22:0, d16:1/23:0, and d18:1/24:0 and the PC 16:0/18:1, 18:0/18:2, and 16:0/16:0 were dominating candidates appearing in maximum concentration in whole raw milk obtained from late lactation, with 21 to 50% of total SM and 16 to 35% of total PC appearing in skim milk. Of the total SM and PC found in skim milk, 35 to 46% of SM and 22 to 29% of PC were associated with the casein micelle fraction. The highest concentrations of SM d18:1/22:0 (341 ± 17 µg/g of casein protein) and PC 16:0/18:1 (180 ± 20 µg/g of casein protein) were found to be associated with the largest casein micelles (diameter = 149 nm) isolated in milk from late lactation, followed by a decrease in concentration as the casein micelle size decreased.
AB - A known biological role of casein micelles is to transport calcium from mother to young and provide amino acids for growth and development. Previous reports demonstrated that modified casein micelles can be used to transport and deliver hydrophobic probes. In this study, the distribution of lipid-soluble phospholipids, including sphingomyelins (SM) and phosphatidylcholines (PC), was quantified in whole raw milk, skim raw milk, and casein micelles of various sizes during early, mid, and late lactation stages. Low-pressure size exclusion chromatography was used to separate casein micelles by size, followed by hydrophobic extraction and liquid chromatography–mass spectrometry for the quantification of PC and SM. Results showed that the SM d18:1/23:0, d18:1/22:0, d18:1/16:0, d16:1/22:0, d16:1/23:0, and d18:1/24:0 and the PC 16:0/18:1, 18:0/18:2, and 16:0/16:0 were dominating candidates appearing in maximum concentration in whole raw milk obtained from late lactation, with 21 to 50% of total SM and 16 to 35% of total PC appearing in skim milk. Of the total SM and PC found in skim milk, 35 to 46% of SM and 22 to 29% of PC were associated with the casein micelle fraction. The highest concentrations of SM d18:1/22:0 (341 ± 17 µg/g of casein protein) and PC 16:0/18:1 (180 ± 20 µg/g of casein protein) were found to be associated with the largest casein micelles (diameter = 149 nm) isolated in milk from late lactation, followed by a decrease in concentration as the casein micelle size decreased.
UR - http://www.scopus.com/inward/record.url?scp=85049990225&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85049990225&partnerID=8YFLogxK
U2 - 10.3168/jds.2017-14137
DO - 10.3168/jds.2017-14137
M3 - Article
C2 - 30031576
AN - SCOPUS:85049990225
SN - 0022-0302
VL - 101
SP - 8672
EP - 8687
JO - Journal of dairy science
JF - Journal of dairy science
IS - 10
ER -