Abstract
The Ras-related GTP-binding protein Cdc42 has been implicated in a diversity of biological functions including the regulation of intracellular trafficking and endocytosis. While screening for Cdc42 targets that influence these activities, we identified the protein-tyrosine kinase ACK2 (for activated Cdc42-associated kinase 2) as a new binding partner for clathrin. ACK2 binds clathrin via a domain that is conserved among a number of other clathrin-binding proteins including the arrestins and AP-2. Overexpression of ACK2 in NIH3T3 cells results in an inhibition of transferrin receptor endocytosis because of a competition between ACK2 and AP-2 for clathrin. Activated Cdc42 weakens the interaction between ACK2 and clathrin and thus reverses the ACK2-mediated inhibition of endocytosis. Overexpression of ACK2 increases the amount of clathrin present in fractions enriched in clathrin-coated vesicles. Taken together, our data suggest that ACK2 may represent a novel clathrin-assembly protein and participate in the regulation of receptor-mediated endocytosis.
Original language | English (US) |
---|---|
Pages (from-to) | 17468-17473 |
Number of pages | 6 |
Journal | Journal of Biological Chemistry |
Volume | 276 |
Issue number | 20 |
DOIs | |
State | Published - May 18 2001 |
All Science Journal Classification (ASJC) codes
- Biochemistry
- Molecular Biology
- Cell Biology