TY - JOUR
T1 - The Chemistry of Kratom [ Mitragyna speciosa]
T2 - Updated Characterization Data and Methods to Elucidate Indole and Oxindole Alkaloids
AU - Flores-Bocanegra, Laura
AU - Raja, Huzefa A.
AU - Graf, Tyler N.
AU - Augustinović, Mario
AU - Wallace, E. Diane
AU - Hematian, Shabnam
AU - Kellogg, Joshua J.
AU - Todd, Daniel A.
AU - Cech, Nadja B.
AU - Oberlies, Nicholas H.
N1 - Publisher Copyright:
Copyright © 2020 American Chemical Society and American Society of Pharmacognosy.
PY - 2020/7/24
Y1 - 2020/7/24
N2 - Two separate commercial products of kratom [Mitragyna speciosa (Korth.) Havil. Rubiaceae] were used to generate reference standards of its indole and oxindole alkaloids. While kratom has been studied for over a century, the characterization data in the literature for many of the alkaloids are either incomplete or inconsistent with modern standards. As such, full 1H and 13C NMR spectra, along with HRESIMS and ECD data, are reported for alkaloids 1-19. Of these, four new alkaloids (7, 11, 17, and 18) were characterized using 2D NMR data, and the absolute configurations of 7, 17, and 18 were established by comparison of experimental and calculated ECD spectra. The absolute configuration for the N(4)-oxide (11) was established by comparison of NMR and ECD spectra of its reduced product with those for compound 7. In total, 19 alkaloids were characterized, including the indole alkaloid mitragynine (1) and its diastereoisomers speciociliatine (2), speciogynine (3), and mitraciliatine (4); the indole alkaloid paynantheine (5) and its diastereoisomers isopaynantheine (6) and epiallo-isopaynantheine (7); the N(4)-oxides mitragynine-N(4)-oxide (8), speciociliatine-N(4)-oxide (9), isopaynantheine-N(4)-oxide (10), and epiallo-isopaynantheine-N(4)-oxide (11); the 9-hydroxylated oxindole alkaloids speciofoline (12), isorotundifoleine (13), and isospeciofoleine (14); and the 9-unsubstituted oxindoles corynoxine A (15), corynoxine B (16), 3-epirhynchophylline (17), 3-epicorynoxine B (18), and corynoxeine (19). With the ability to analyze the spectroscopic data of all of these compounds concomitantly, a decision tree was developed to differentiate these kratom alkaloids based on a few key chemical shifts in the 1H and/or 13C NMR spectra.
AB - Two separate commercial products of kratom [Mitragyna speciosa (Korth.) Havil. Rubiaceae] were used to generate reference standards of its indole and oxindole alkaloids. While kratom has been studied for over a century, the characterization data in the literature for many of the alkaloids are either incomplete or inconsistent with modern standards. As such, full 1H and 13C NMR spectra, along with HRESIMS and ECD data, are reported for alkaloids 1-19. Of these, four new alkaloids (7, 11, 17, and 18) were characterized using 2D NMR data, and the absolute configurations of 7, 17, and 18 were established by comparison of experimental and calculated ECD spectra. The absolute configuration for the N(4)-oxide (11) was established by comparison of NMR and ECD spectra of its reduced product with those for compound 7. In total, 19 alkaloids were characterized, including the indole alkaloid mitragynine (1) and its diastereoisomers speciociliatine (2), speciogynine (3), and mitraciliatine (4); the indole alkaloid paynantheine (5) and its diastereoisomers isopaynantheine (6) and epiallo-isopaynantheine (7); the N(4)-oxides mitragynine-N(4)-oxide (8), speciociliatine-N(4)-oxide (9), isopaynantheine-N(4)-oxide (10), and epiallo-isopaynantheine-N(4)-oxide (11); the 9-hydroxylated oxindole alkaloids speciofoline (12), isorotundifoleine (13), and isospeciofoleine (14); and the 9-unsubstituted oxindoles corynoxine A (15), corynoxine B (16), 3-epirhynchophylline (17), 3-epicorynoxine B (18), and corynoxeine (19). With the ability to analyze the spectroscopic data of all of these compounds concomitantly, a decision tree was developed to differentiate these kratom alkaloids based on a few key chemical shifts in the 1H and/or 13C NMR spectra.
UR - http://www.scopus.com/inward/record.url?scp=85087695887&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85087695887&partnerID=8YFLogxK
U2 - 10.1021/acs.jnatprod.0c00257
DO - 10.1021/acs.jnatprod.0c00257
M3 - Article
C2 - 32597657
AN - SCOPUS:85087695887
SN - 0163-3864
VL - 83
SP - 2165
EP - 2177
JO - Journal of Natural Products
JF - Journal of Natural Products
IS - 7
ER -