The Chesapeake Bay program modeling system: Overview and recommendations for future development

Raleigh R. Hood, Gary W. Shenk, Rachel L. Dixon, Sean M.C. Smith, William P. Ball, Jesse O. Bash, Rich Batiuk, Kathy Boomer, Damian C. Brady, Carl Cerco, Peter Claggett, Kim de Mutsert, Zachary M. Easton, Andrew J. Elmore, Marjorie A.M. Friedrichs, Lora A. Harris, Thomas F. Ihde, Lara Lacher, Li Li, Lewis C. LinkerAndrew Miller, Julia Moriarty, Gregory B. Noe, George Onyullo, Kenneth Rose, Katie Skalak, Richard Tian, Tamie L. Veith, Lisa Wainger, Donald Weller, Yinglong Joseph Zhang

Research output: Contribution to journalReview articlepeer-review

30 Scopus citations


The Chesapeake Bay is the largest, most productive, and most biologically diverse estuary in the continental United States providing crucial habitat and natural resources for culturally and economically important species. Pressures from human population growth and associated development and agricultural intensification have led to excessive nutrient and sediment inputs entering the Bay, negatively affecting the health of the Bay ecosystem and the economic services it provides. The Chesapeake Bay Program (CBP) is a unique program formally created in 1983 as a multi-stakeholder partnership to guide and foster restoration of the Chesapeake Bay and its watershed. Since its inception, the CBP Partnership has been developing, updating, and applying a complex linked modeling system of watershed, airshed, and estuary models as a planning tool to inform strategic management decisions and Bay restoration efforts. This paper provides a description of the 2017 CBP Modeling System and the higher trophic level models developed by the NOAA Chesapeake Bay Office, along with specific recommendations that emerged from a 2018 workshop designed to inform future model development. Recommendations highlight the need for simulation of watershed inputs, conditions, processes, and practices at higher resolution to provide improved information to guide local nutrient and sediment management plans. More explicit and extensive modeling of connectivity between watershed landforms and estuary sub-areas, estuarine hydrodynamics, watershed and estuarine water quality, the estuarine-watershed socioecological system, and living resources will be important to broaden and improve characterization of responses to targeted nutrient and sediment load reductions. Finally, the value and importance of maintaining effective collaborations among jurisdictional managers, scientists, modelers, support staff, and stakeholder communities is emphasized. An open collaborative and transparent process has been a key element of successes to date and is vitally important as the CBP Partnership moves forward with modeling system improvements that help stakeholders evolve new knowledge, improve management strategies, and better communicate outcomes.

Original languageEnglish (US)
Article number109635
JournalEcological Modelling
StatePublished - Sep 15 2021

All Science Journal Classification (ASJC) codes

  • Ecological Modeling
  • Ecology


Dive into the research topics of 'The Chesapeake Bay program modeling system: Overview and recommendations for future development'. Together they form a unique fingerprint.

Cite this