Abstract
Exhibited by structurally chiral materials-such as Reusch piles, cholesteric liquid crystals (CLCs), and chiral sculptured thin films (STFs)-due to their helical nonhomogeneity along a fixed axis, the circular Bragg phenomenon is the almost total reflection of the incident light of the co-handed circularpolarization state but very little reflection of the incident light of the crosshanded circular-polarization state. Manifesting itself in spectral regimes that depend on the angle of incidence, the structural period, and the relative permittivity dyadic, the phenomenon amounts to the formation of a light pipe that bleeds energy backward under appropriate conditions. Mild dissipation and dispersion do not significantly affect the circular Bragg regime. Every structurally chiral material of sufficient thickness is essentially a circularpolarization- sensitive band-rejection filter. Cascades of these materials with or without structural defects can be used to satisfy complex filtering requirements, such as multiband, narrowband, and ultra-narrowband filtering. A shift in the circular Bragg regime due to infiltration of a chiral STF by a fluid enables optical sensing. Sources of circularly polarized light can be fabricated by embedding emission sources in CLCs and chiral STFs.
Original language | English (US) |
---|---|
Pages (from-to) | 225-292 |
Number of pages | 68 |
Journal | Advances in Optics and Photonics |
Volume | 6 |
Issue number | 2 |
DOIs | |
State | Published - Jun 30 2014 |
All Science Journal Classification (ASJC) codes
- Atomic and Molecular Physics, and Optics