TY - JOUR
T1 - The contribution of cross-talk between the cell-surface proteins CD36 and CD47-TSP-1 in osteoclast formation and function
AU - Koduru, Srinivas V.
AU - Sun, Ben Hua
AU - Walker, Joanne M.
AU - Zhu, Meiling
AU - Simpson, Christine
AU - Dhodapkar, Madhav
AU - Insogna, Karl L.
N1 - Publisher Copyright:
© 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
PY - 2018/9/28
Y1 - 2018/9/28
N2 - Antibody-mediated blockade of cluster of differentiation 47 (CD47)-thrombospondin-1 (TSP-1) interactions blocks osteoclast formation in vitro and attenuates parathyroid hormone (PTH)-induced hypercalcemia in vivo in mice. Hypercalcemia in this model reflects increased bone resorption. TSP-1 has two cell-associated binding partners, CD47 and CD36. The roles of these two molecules in mediating the effects of TSP1 in osteoclasts are unclear. Osteoclast formation was attenuated but not absent when preosteoclasts isolated from CD47-/- mice were cocultured with WT osteoblasts. Suppressing CD36 in osteoclast progenitors also attenuated osteoclast formation. The hypercalcemic response to a PTH infusion was blunted in CD47-/-/CD3-/- (double knockout (DKO)) female mice but not CD47-/- mice or CD36-/- animals, supporting a role for both CD47 and CD36 in mediating this effect. Consistent with this, DKO osteoclasts had impaired resorptive activity when analyzed in vitro. Inhibition of nitric oxide (NO) signaling is known to promote osteoclastogenesis, and TSP-1 suppresses NO production and signaling. An anti-TSP-1 antibody increased NO production in osteoclasts, and the inhibitory effect of anti-TSP-1 on osteoclastogenesis was completely rescued by L-nitroarginine methyl ester (L-NAME), a competitive NO synthase inhibitor. Supportive of an important role for CD36 in mediating the pro-osteoclastogenic effects of TSP-1, engaging CD36 with a synthetic agonist, p907, suppressedNOproduction in anti-TSP-1-treated cultures, allowing osteoclast maturation to occur. These results establish that CD36 and CD47 both participate in mediating the actions of TSP-1 in osteoclasts and establish a physiologically relevant cross-talk in bone tissue between these two molecules.
AB - Antibody-mediated blockade of cluster of differentiation 47 (CD47)-thrombospondin-1 (TSP-1) interactions blocks osteoclast formation in vitro and attenuates parathyroid hormone (PTH)-induced hypercalcemia in vivo in mice. Hypercalcemia in this model reflects increased bone resorption. TSP-1 has two cell-associated binding partners, CD47 and CD36. The roles of these two molecules in mediating the effects of TSP1 in osteoclasts are unclear. Osteoclast formation was attenuated but not absent when preosteoclasts isolated from CD47-/- mice were cocultured with WT osteoblasts. Suppressing CD36 in osteoclast progenitors also attenuated osteoclast formation. The hypercalcemic response to a PTH infusion was blunted in CD47-/-/CD3-/- (double knockout (DKO)) female mice but not CD47-/- mice or CD36-/- animals, supporting a role for both CD47 and CD36 in mediating this effect. Consistent with this, DKO osteoclasts had impaired resorptive activity when analyzed in vitro. Inhibition of nitric oxide (NO) signaling is known to promote osteoclastogenesis, and TSP-1 suppresses NO production and signaling. An anti-TSP-1 antibody increased NO production in osteoclasts, and the inhibitory effect of anti-TSP-1 on osteoclastogenesis was completely rescued by L-nitroarginine methyl ester (L-NAME), a competitive NO synthase inhibitor. Supportive of an important role for CD36 in mediating the pro-osteoclastogenic effects of TSP-1, engaging CD36 with a synthetic agonist, p907, suppressedNOproduction in anti-TSP-1-treated cultures, allowing osteoclast maturation to occur. These results establish that CD36 and CD47 both participate in mediating the actions of TSP-1 in osteoclasts and establish a physiologically relevant cross-talk in bone tissue between these two molecules.
UR - http://www.scopus.com/inward/record.url?scp=85054099044&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85054099044&partnerID=8YFLogxK
U2 - 10.1074/jbc.RA117.000633
DO - 10.1074/jbc.RA117.000633
M3 - Article
C2 - 30082316
AN - SCOPUS:85054099044
SN - 0021-9258
VL - 293
SP - 15055
EP - 15069
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 39
ER -