Abstract
A number of observations indicate that an upper stability transition occurs along well‐developed faults, such as the San Andreas, as a result of unconsolidated gouge within shallow regions of these faults. These observations include the depth distribution of seismicity along faults with and without well‐developed gouge zones, correlations between seismicity and shallow crustal structure, and modeling of coseismic and post‐seismic slip. In addition, recent experimental friction studies indicate that thick layers of simulated gouge exhibit a positive slip‐rate dependence of frictional resistance (velocity strengthening) and thus inherently stable slip, whereas bare rock surfaces and thin gouge layers exhibit potentially unstable velocity weakening behavior. Subduction zones with large accretionary wedges also exhibit an upper stability transition in that slip is aseismic within the accretionary wedge. A stability transition due to the presence of unconsolidated material can also be invoked in this case.
Original language | English (US) |
---|---|
Pages (from-to) | 621-624 |
Number of pages | 4 |
Journal | Geophysical Research Letters |
Volume | 15 |
Issue number | 6 |
DOIs | |
State | Published - Jun 1988 |
All Science Journal Classification (ASJC) codes
- Geophysics
- General Earth and Planetary Sciences