TY - JOUR
T1 - The dopaminergic neurons of the A11 system in RLS autopsy brains appear normal
AU - Earley, Christopher J.
AU - Allen, Richard P.
AU - Connor, James
AU - Ferrucci, Luigi
AU - Troncoso, Juan
N1 - Funding Information:
We thank Ms. Gay Rudow for excellent technical assistance. Financial support for this study came from NIH Grant, PO1-AG21190. We thank the RLS Foundation, the Harvard Brain Tissue Resource Center (R24 MH/NS068855) and the NIH/NIA Baltimore Longitudinal Study on Ageing (BLSA) for contributing the brains.
PY - 2009/12
Y1 - 2009/12
N2 - Although the positive clinical benefits of levodopa have fostered the concept of an abnormality in the dopaminergic system in Restless Legs Syndrome (RLS), research into the nigro-striatal (PET/SPECT studies) or tubero-infundibular (i.e., prolactin secretion) dopaminergic pathways has shown limited positive results. Some research groups have focused on the A11 dopaminergic system in the hypothalamus as this is the primary source of descending dopaminergic input into the spinal cord, an area of the nervous system believed by some investigators to be involved in RLS symptom development. Some investigators have now proposed lesioning or toxin-inhibiting the A11 system as a model of RLS, even though there has been no clear clinical or autopsy data to suggest that RLS is a neurodegenerative disorder. In this study, the A11 cell bodies were identified in 6 RLS and 6 aged-matched control autopsy cases. Cells were stained for tyrosine hydroxylase (TH), and stereological measure of the individual TH (+) cell volume was made. Regional assessment of gliosis as assessed by immunostaining for glial fibrillary acidic protein (GFAP) was made in the surrounding tissue. General histological staining was also performed on the tissue. This study found no significant difference between RLS or control cases on any measure used: TH (+) cell volume, fractional GFAP staining, or general histological examination. Nor was there histological indication of any significant inflammation or concurrent ongoing pathology in these RLS cases. The findings do not support the concept of dramatic cell loss or of a neurodegenerative process in the A11 hypothalamic region of patients with RLS. However, that does not exclude the possibility that the A11 system is involved in RLS symptoms. Changes at the cellular level in dopaminergic metabolism or at the distal synapse with changes in receptors or transporters were not evaluated in this study.
AB - Although the positive clinical benefits of levodopa have fostered the concept of an abnormality in the dopaminergic system in Restless Legs Syndrome (RLS), research into the nigro-striatal (PET/SPECT studies) or tubero-infundibular (i.e., prolactin secretion) dopaminergic pathways has shown limited positive results. Some research groups have focused on the A11 dopaminergic system in the hypothalamus as this is the primary source of descending dopaminergic input into the spinal cord, an area of the nervous system believed by some investigators to be involved in RLS symptom development. Some investigators have now proposed lesioning or toxin-inhibiting the A11 system as a model of RLS, even though there has been no clear clinical or autopsy data to suggest that RLS is a neurodegenerative disorder. In this study, the A11 cell bodies were identified in 6 RLS and 6 aged-matched control autopsy cases. Cells were stained for tyrosine hydroxylase (TH), and stereological measure of the individual TH (+) cell volume was made. Regional assessment of gliosis as assessed by immunostaining for glial fibrillary acidic protein (GFAP) was made in the surrounding tissue. General histological staining was also performed on the tissue. This study found no significant difference between RLS or control cases on any measure used: TH (+) cell volume, fractional GFAP staining, or general histological examination. Nor was there histological indication of any significant inflammation or concurrent ongoing pathology in these RLS cases. The findings do not support the concept of dramatic cell loss or of a neurodegenerative process in the A11 hypothalamic region of patients with RLS. However, that does not exclude the possibility that the A11 system is involved in RLS symptoms. Changes at the cellular level in dopaminergic metabolism or at the distal synapse with changes in receptors or transporters were not evaluated in this study.
UR - http://www.scopus.com/inward/record.url?scp=70350770999&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70350770999&partnerID=8YFLogxK
U2 - 10.1016/j.sleep.2009.01.006
DO - 10.1016/j.sleep.2009.01.006
M3 - Article
C2 - 19307154
AN - SCOPUS:70350770999
SN - 1389-9457
VL - 10
SP - 1155
EP - 1157
JO - Sleep Medicine
JF - Sleep Medicine
IS - 10
ER -