TY - JOUR
T1 - The effect of a microgravity (space) environment on the expression of expansins from the peg and root tissues of Cucumis sativus
AU - Link, Bruce M.
AU - Wagner, Edward R.
AU - Cosgrove, Daniel J.
PY - 2001
Y1 - 2001
N2 - In young cucumber seedlings, the peg is a polar outgrowth of tissue that functions by snagging the seed coat, thereby freeing the cotyledons. The development of the peg is thought to be g.-d. and has become a model system for p.-g. response. Peg development requires rapid cell expansion, a process thought to be catalyzed by α-expansins and thus was a good system to identify expansins that were regulated by gravity. This study identified 7 new α-expansin cDNAs from cucumber seedlings (Cucumis sativus L. cv Burpee Hybrid II) and examined their expression patterns. Two α-expansins (CsExp3 and CsExp4) were more highly expressed in the peg and the root. Earlier reports stated that pegs tend not to form in the absence of gravity, so the expression levels were compared in the pegs of seedlings grown in space (STS-95), on a clinostat, and on earth (1 g). Pegs were observed to form at high frequency on clinostat and space-grown seedlings, yet on clinostats there was more than a 4-fold reduction in the expression of CsExp3 in the pegs of seedlings grown on clinostats vs. those grown at 1 g, while the CsExp4 gene appeared to be turned off (below detection limits). There were no detectable differences in expansin gene expression levels for the pegs of seedlings grown in space or in the orbiter environmental simulator (OES) (1 g) at NASA. The microgravity environment did not affect the expression of CsExp3 or CsExp4, and the clinostat did not simulate the microgravity environment well.
AB - In young cucumber seedlings, the peg is a polar outgrowth of tissue that functions by snagging the seed coat, thereby freeing the cotyledons. The development of the peg is thought to be g.-d. and has become a model system for p.-g. response. Peg development requires rapid cell expansion, a process thought to be catalyzed by α-expansins and thus was a good system to identify expansins that were regulated by gravity. This study identified 7 new α-expansin cDNAs from cucumber seedlings (Cucumis sativus L. cv Burpee Hybrid II) and examined their expression patterns. Two α-expansins (CsExp3 and CsExp4) were more highly expressed in the peg and the root. Earlier reports stated that pegs tend not to form in the absence of gravity, so the expression levels were compared in the pegs of seedlings grown in space (STS-95), on a clinostat, and on earth (1 g). Pegs were observed to form at high frequency on clinostat and space-grown seedlings, yet on clinostats there was more than a 4-fold reduction in the expression of CsExp3 in the pegs of seedlings grown on clinostats vs. those grown at 1 g, while the CsExp4 gene appeared to be turned off (below detection limits). There were no detectable differences in expansin gene expression levels for the pegs of seedlings grown in space or in the orbiter environmental simulator (OES) (1 g) at NASA. The microgravity environment did not affect the expression of CsExp3 or CsExp4, and the clinostat did not simulate the microgravity environment well.
UR - http://www.scopus.com/inward/record.url?scp=0034816589&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034816589&partnerID=8YFLogxK
U2 - 10.1034/j.1399-3054.2001.1130218.x
DO - 10.1034/j.1399-3054.2001.1130218.x
M3 - Article
C2 - 11710397
AN - SCOPUS:0034816589
SN - 0031-9317
VL - 113
SP - 292
EP - 300
JO - Physiologia Plantarum
JF - Physiologia Plantarum
IS - 2
ER -