TY - GEN
T1 - The effect of transmembrane potential on the gating of MSCL channels in droplet interface bilayers
AU - Najem, Joseph S.
AU - Sukharev, Sergei
AU - Leo, Donald J.
N1 - Publisher Copyright:
Copyright © 2016 by ASME.
PY - 2016
Y1 - 2016
N2 - The ability to functionalize droplet interface bilayers (DIBs) with the MscL channel and its mutants has been demonstrated. In previous work, the V23T gain of function mutant of MscL produced consistent activation when harmonic axial compressions were applied to the aqueous droplets supporting the lipid bilayer, where the channels settle. The deformation of the droplets results, at maximum compression, in an increase in surface area, and thus an increase in tension at the water-lipid-oil interface. This increase in monolayer tension was found to be the product of the relative change in surface area of each of the droplets and the compressibility modulus of the DPhPC monolayer (∼120 mN/m). The tension increase at the water-lipid-oil interface almost doubles to make up the increase in tension in the bilayer interface, resulting in activation of the incorporated MscL channels. However, it was found that the application of a relatively high transmembrane potential (∼100 mV), from an external power source, is a requirement for the activation of the V23T-MscL channels. Here, we investigate and analyze the impact of transmembrane potential on the activity of MscL channels in both a droplet interface bilayer system and E. coli spheroplast via patch-clamp. We demonstrate that the channels became more susceptible to gating upon the application of a negative potential, compared to when a positive potential is applied, proving their sensitivity to voltage polarity.
AB - The ability to functionalize droplet interface bilayers (DIBs) with the MscL channel and its mutants has been demonstrated. In previous work, the V23T gain of function mutant of MscL produced consistent activation when harmonic axial compressions were applied to the aqueous droplets supporting the lipid bilayer, where the channels settle. The deformation of the droplets results, at maximum compression, in an increase in surface area, and thus an increase in tension at the water-lipid-oil interface. This increase in monolayer tension was found to be the product of the relative change in surface area of each of the droplets and the compressibility modulus of the DPhPC monolayer (∼120 mN/m). The tension increase at the water-lipid-oil interface almost doubles to make up the increase in tension in the bilayer interface, resulting in activation of the incorporated MscL channels. However, it was found that the application of a relatively high transmembrane potential (∼100 mV), from an external power source, is a requirement for the activation of the V23T-MscL channels. Here, we investigate and analyze the impact of transmembrane potential on the activity of MscL channels in both a droplet interface bilayer system and E. coli spheroplast via patch-clamp. We demonstrate that the channels became more susceptible to gating upon the application of a negative potential, compared to when a positive potential is applied, proving their sensitivity to voltage polarity.
UR - http://www.scopus.com/inward/record.url?scp=85013925686&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85013925686&partnerID=8YFLogxK
U2 - 10.1115/SMASIS2016-9150
DO - 10.1115/SMASIS2016-9150
M3 - Conference contribution
AN - SCOPUS:85013925686
T3 - ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2016
BT - Modeling, Simulation and Control; Bio-Inspired Smart Materials and Systems; Energy Harvesting
PB - American Society of Mechanical Engineers
T2 - ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2016
Y2 - 28 September 2016 through 30 September 2016
ER -