TY - GEN
T1 - The effects of ambient conditions on helicopter rotor source noise modeling
AU - Greenwood, Eric
AU - Schmitz, Fredric H.
PY - 2011
Y1 - 2011
N2 - A new physics-based method called "Fundamental Rotorcraft Acoustic Modeling from Experiments" (FRAME) is used to demonstrate the change in rotor harmonic noise of a helicopter operating at different ambient conditions. FRAME is based upon a non-dimensional representation of the governing acoustic and performance equations of a single rotor helicopter. Measured external noise is used together with parameter identification techniques to develop a model of helicopter external noise that is a hybrid between theory and experiment. The FRAME method is used to evaluate the main rotor harmonic noise of a Bell 206B3 helicopter operating at different altitudes. The variation with altitude of Blade-Vortex Interaction (BVI) noise, known to be a strong function of the helicopter's advance ratio, is dependent upon which definition of airspeed is flown by the pilot. If normal flight procedures are followed and indicated airspeed (IAS) is held constant, the true airspeed (TAS) of the helicopter increases with altitude. This causes an increase in advance ratio and a decrease in the speed of sound which results in large changes to BVI noise levels. Results also show that thickness noise on this helicopter becomes more intense at high altitudes where advancing tip Mach number increases because the speed of sound is decreasing and advance ratio increasing for the same indicated airspeed. These results suggest that existing measurement-based empirically derived helicopter rotor noise source models may give incorrect noise estimates when they are used at conditions where data were not measured and may need to be corrected for mission land-use planning purposes.
AB - A new physics-based method called "Fundamental Rotorcraft Acoustic Modeling from Experiments" (FRAME) is used to demonstrate the change in rotor harmonic noise of a helicopter operating at different ambient conditions. FRAME is based upon a non-dimensional representation of the governing acoustic and performance equations of a single rotor helicopter. Measured external noise is used together with parameter identification techniques to develop a model of helicopter external noise that is a hybrid between theory and experiment. The FRAME method is used to evaluate the main rotor harmonic noise of a Bell 206B3 helicopter operating at different altitudes. The variation with altitude of Blade-Vortex Interaction (BVI) noise, known to be a strong function of the helicopter's advance ratio, is dependent upon which definition of airspeed is flown by the pilot. If normal flight procedures are followed and indicated airspeed (IAS) is held constant, the true airspeed (TAS) of the helicopter increases with altitude. This causes an increase in advance ratio and a decrease in the speed of sound which results in large changes to BVI noise levels. Results also show that thickness noise on this helicopter becomes more intense at high altitudes where advancing tip Mach number increases because the speed of sound is decreasing and advance ratio increasing for the same indicated airspeed. These results suggest that existing measurement-based empirically derived helicopter rotor noise source models may give incorrect noise estimates when they are used at conditions where data were not measured and may need to be corrected for mission land-use planning purposes.
UR - http://www.scopus.com/inward/record.url?scp=79960688067&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79960688067&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:79960688067
SN - 9781617828812
T3 - Annual Forum Proceedings - AHS International
SP - 47
EP - 65
BT - 67th American Helicopter Society International Annual Forum 2011
T2 - 67th American Helicopter Society International Annual Forum 2011
Y2 - 3 May 2011 through 5 May 2011
ER -