The effects of cardiopulmonary bypass and deep hypothermic circulatory arrest on blood viscoelasticity and cerebral blood flow in a neonatal piglet model

Akif Ündar, William K. Vaughn, John H. Calhoon

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

The purpose of this study is to determine the effects of cardiopulmonary bypass (CPB) and deep hypothermic circulatory arrest (DHCA) on the viscoelasticity (viscosity and elasticity) of blood and global and regional cerebral blood flow (CBF) in a neonatal piglet model. After initiation of CPB, all animals (n = 3) were subjected to core cooling for 20 min to reduce the piglets' nasopharyngeal temperatures to 18°C. This was followed by 60 min of DHCA, then 45 min of rewarming. During cooling and rewarming, the alpha-stat technique was used. Arterial blood samples were taken for viscoelasticity measurements and differently labeled microspheres were injected at pre-CPB, pre- and post-DHCA, 30 and 60 min after CPB for global and regional cerebral blood flow calculations. Viscosity and elasticity were measured at 2 Hz, 22°C and at a strain of 0.2, 1, and 5 using a Vilastic-3 Viscoelasticity Analyzer. Elasticity of blood at a strain = 1 decreased to 32%, 83%, 57%, and 61% (p = 0.01; ANOVA) while the viscosity diminished 8.4%, 38%, 22%, 26% compared to the baseline values (p = 0.01, ANOVA) at pre-DHCA, post-DHCA, 30 and 60 min after CPB, respectively. The viscoelasticity of blood at a strain of 0.2 and 5 also had similar statistically significant drops (p < 0.05). Global and regional cerebral blood flow were also decreased 30%, 66%, 64% and 63% at the same experimental stages Co < 0.05, ANOVA). CPB procedure with 60 min of DHCA significantly alters the blood viscoelasticity, global and regional cerebral blood flow. These large changes in viscoelasticity may have a significant impact on organ blood flow, particularly in the brain.

Original languageEnglish (US)
Pages (from-to)121-128
Number of pages8
JournalPerfusion
Volume15
Issue number2
DOIs
StatePublished - Jan 1 2000

All Science Journal Classification (ASJC) codes

  • Radiology Nuclear Medicine and imaging
  • Safety Research
  • Cardiology and Cardiovascular Medicine
  • Advanced and Specialized Nursing

Fingerprint

Dive into the research topics of 'The effects of cardiopulmonary bypass and deep hypothermic circulatory arrest on blood viscoelasticity and cerebral blood flow in a neonatal piglet model'. Together they form a unique fingerprint.

Cite this