THE EFFECTS OF CHANNEL SUPPLIES ON OVERALL FILM-COOLING EFFECTIVENESS

Emma M. Veley, Karen A. Thole, David G. Bogard

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Cooling components in the hot section of a gas turbine is essential to component durability. Common methods of cooling include rib turbulators in internal passages and film cooling on external surfaces. The holes that produce the film cooling are fed from the internal channels often containing ribs. Consequently, there is an interdependence of internal heat transfer and external film cooling. The purpose of this study was to obtain a better understanding of the interaction of ribs and film cooling. To quantify the cooling performance the surface temperatures were measured from which overall effectiveness was calculated. For the experiments, additively manufactured test coupons were made of Inconel 718 to match engine Biot numbers. These test coupons had internal feed channels with and without ribs and had both cylindrical holes and meter diffuser shaped holes with 15° lateral expansion angles and a 1° forward expansion angle. A single rectangular channel was one type of feed channel. The other type of feed channels was individual circular channels with each circular channel supplying an individual film-cooling hole. The experimental results showed that the circular individual channels have 80% higher baseline overall effectiveness than the single rectangular channel without any film cooling. Ribbed turbulators without film cooling also increased the overall effectiveness by 21% for single rectangular channel and by 29% for the circular individual channels compared to the respective non-ribbed channels. While the film cooling increased the overall effectiveness of all geometries, the single rectangular channels had increased overall effectiveness levels by up to twice that of the no film-cooling case. On average the single rectangular channels had an 80% improvement from film cooling, whereas the individual channel feeds on average had only a 50% improvement given their high baseline effectiveness levels.

Original languageEnglish (US)
Title of host publicationHeat Transfer - Combustors; Film Cooling
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791887004
DOIs
StatePublished - 2023
EventASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, GT 2023 - Boston, United States
Duration: Jun 26 2023Jun 30 2023

Publication series

NameProceedings of the ASME Turbo Expo
Volume7-A

Conference

ConferenceASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, GT 2023
Country/TerritoryUnited States
CityBoston
Period6/26/236/30/23

All Science Journal Classification (ASJC) codes

  • General Engineering

Cite this