TY - GEN
T1 - The effects of curved foot design parameters on planar biped walking
AU - Martin, Anne E.
AU - Schmiedeler, James P.
PY - 2012
Y1 - 2012
N2 - Although the nature of their gaits is similar, planar bipeds with curved feet have been shown experimentally to be more energetically efficient than those with point feet. Further, both healthy human feet and prosthetic feet can be modeled as a circular arc with the center of curvature in front of the shank. Thus, understanding the effects of a curved foot's properties on the energetic cost of gait and on gait kinematics has the potential to improve both bipedal robots and prosthesis design. To date, there has not been a systematic study of the effects of changing the foot radius and center of curvature location on symmetric bipeds. This paper explores the effects of changing the curved foot's geometric properties for both two- And five-link planar, under actuated bipeds with instantaneous transfer of support at impact. It is found that the foot radius has a substantial effect on the energetic efficiency of a gait regardless of the morphology of the biped. The effect of foot center of curvature location on energy efficiency is dependent on the morphology of the biped and is much less significant than the effect of foot radius. Both the foot radius and center of curvature location affect the knee kinematics of the five-link biped. The foot radius affects the hip kinematics of the two-link biped.
AB - Although the nature of their gaits is similar, planar bipeds with curved feet have been shown experimentally to be more energetically efficient than those with point feet. Further, both healthy human feet and prosthetic feet can be modeled as a circular arc with the center of curvature in front of the shank. Thus, understanding the effects of a curved foot's properties on the energetic cost of gait and on gait kinematics has the potential to improve both bipedal robots and prosthesis design. To date, there has not been a systematic study of the effects of changing the foot radius and center of curvature location on symmetric bipeds. This paper explores the effects of changing the curved foot's geometric properties for both two- And five-link planar, under actuated bipeds with instantaneous transfer of support at impact. It is found that the foot radius has a substantial effect on the energetic efficiency of a gait regardless of the morphology of the biped. The effect of foot center of curvature location on energy efficiency is dependent on the morphology of the biped and is much less significant than the effect of foot radius. Both the foot radius and center of curvature location affect the knee kinematics of the five-link biped. The foot radius affects the hip kinematics of the two-link biped.
UR - http://www.scopus.com/inward/record.url?scp=84884602280&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84884602280&partnerID=8YFLogxK
U2 - 10.1115/DETC2012-70557
DO - 10.1115/DETC2012-70557
M3 - Conference contribution
AN - SCOPUS:84884602280
SN - 9780791845035
T3 - Proceedings of the ASME Design Engineering Technical Conference
SP - 815
EP - 824
BT - ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2012
T2 - ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2012
Y2 - 12 August 2012 through 12 August 2012
ER -