The effects of shell layer morphology and processing on the electrical and photovoltaic properties of silicon nanowire radial p+-n+ junctions

Xin Wang, Yue Ke, Chito E. Kendrick, Xiaojun Weng, Haoting Shen, Mengwei Kuo, Theresa S. Mayer, Joan M. Redwing

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Single wire p+-n+ radial junction nanowire solar cell devices were fabricated by low pressure chemical vapor deposition of n+ silicon shell layers on p+ silicon nanowires synthesized by vapor-liquid-solid growth. The n+-shell layers were deposited at two growth temperatures (650 °C and 950 °C) to study the impact of shell crystallinity on the device properties. The n-type Si shell layers deposited at 650 °C were polycrystalline and resulted in diodes that were not rectifying. A pre-coating anneal at 950 °C in H2 improved the structural quality of the shell layers and yielded diodes with a dark saturation current density of 3 × 10-5 A cm-2. Deposition of the n-type Si shell layer at 950 °C resulted in epitaxial growth on the nanowire core, which lowered the dark saturation current density to 3 × 10-7 A cm-2 and increased the solar energy conversion efficiency. Temperature-dependent current-voltage measurements demonstrated that the 950 °C coated devices were abrupt junction p+-n+ diodes with band-to-band tunneling at high reverse-bias voltage, while multi-step tunneling degraded the performance of devices fabricated with a 950 °C anneal and 650 °C coating. The higher trap density of the 950 °C annealed 650 °C coated devices is believed to arise from the polycrystalline nature of the shell layer coating, which results in an increased density of dangling bonds at the p+-n+ junction interface.

Original languageEnglish (US)
Pages (from-to)7267-7274
Number of pages8
JournalNanoscale
Volume7
Issue number16
DOIs
StatePublished - Apr 28 2015

All Science Journal Classification (ASJC) codes

  • General Materials Science

Fingerprint

Dive into the research topics of 'The effects of shell layer morphology and processing on the electrical and photovoltaic properties of silicon nanowire radial p+-n+ junctions'. Together they form a unique fingerprint.

Cite this