Abstract
We analyse 1598 serendipitous Chandra X-ray observations of 462 radio-quiet quasars to constrain the frequency of extreme amplitude X-ray variability that is intrinsic to the quasar corona and innermost accretion flow. The quasars in this investigation are all spectroscopically confirmed, optically bright (mi ≤ 20.2), and contain no identifiable broad absorption lines in their optical/ultraviolet spectra. This sample includes quasars spanning z ≈ 0.1-4 and probes X-ray variability on time-scales of up to ≈12 rest-frame years. Variability amplitudes are computed between every epoch of observation for each quasar and are analysed as a function of time-scale and luminosity. The tail-heavy distributions of variability amplitudes at all time-scales indicate that extreme X-ray variations are driven by an additional physical mechanism and not just typical random fluctuations of the coronal emission. Similarly, extreme X-ray variations of low-luminosity quasars seem to be driven by an additional physical mechanism, whereas high-luminosity quasars seem more consistent with random fluctuations. The amplitude at which an X-ray variability event can be considered extreme is quantified for different time-scales and luminosities. Extreme X-ray variations occur more frequently at long time-scales (Δt 300 d) than at shorter time-scales and in low-luminosity quasars compared to high-luminosity quasars over a similar time-scale. A binomial analysis indicates that extreme intrinsic X-ray variations are rare, with a maximum occurrence rate of < 2.4% of observations. Finally, we present X-ray variability and basic optical emission-line properties of three archival quasars that have been newly discovered to exhibit extreme X-ray variability.
| Original language | English (US) |
|---|---|
| Pages (from-to) | 4033-4050 |
| Number of pages | 18 |
| Journal | Monthly Notices of the Royal Astronomical Society |
| Volume | 498 |
| Issue number | 3 |
| DOIs | |
| State | Published - Nov 1 2020 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science