The Fried Average Entropy and Slow Entropy for Actions of Higher Rank Abelian Groups

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


We consider two numerical entropy-type invariants for actions of ℤk, invariant under a choice of generators and well-adapted for smooth actions whose individual elements have positive entropy. We concentrate on the maximal rank case, i.e. ℤ, k ≥ 2 actions on k + 1-dimensional manifolds. In this case we show that for a fixed dimension (or, equivalently, rank) each of the invariants determines the other and their values are closely related to regulators in algebraic number fields. In particular, in contrast with the classical case of ℤ actions the entropies of ergodic maximal rank actions take only countably many values. Our main result is the dichotomy that is best expressed under the assumption of weak mixing or, equivalently, no periodic factors: either both invariants vanish, or their values are bounded away from zero by universal constants. Furthermore, the lower bounds grow with dimension: for the first invariant (the Fried average entropy) exponentially, and for the second (the slow entropy) linearly.

Original languageEnglish (US)
Pages (from-to)1204-1228
Number of pages25
JournalGeometric and Functional Analysis
Issue number4
StatePublished - Aug 2014

All Science Journal Classification (ASJC) codes

  • Analysis
  • Geometry and Topology


Dive into the research topics of 'The Fried Average Entropy and Slow Entropy for Actions of Higher Rank Abelian Groups'. Together they form a unique fingerprint.

Cite this