The G protein β-subunit, AGB1, interacts with FERONIA in RALF1-regulated stomatal movement

Research output: Contribution to journalArticlepeer-review

71 Scopus citations


Heterotrimeric guanine nucleotide-binding (G) proteins are composed of Gα, Gβ, and Gγ subunits and function as molecular switches in signal transduction. In Arabidopsis (Arabidopsis thaliana), there are one canonical Gα (GPA1), three extra-large Gα (XLG1, XLG2, and XLG3), one Gβ (AGB1), and three Gγ (AGG1, AGG2, and AGG3) subunits. To elucidate AGB1 molecular signaling, we performed immunoprecipitation using plasma membrane-enriched proteins followed by mass spectrometry to identify the protein interactors of AGB1. After eliminating proteins present in the control immunoprecipitation, commonly identified contaminants, and organellar proteins, a total of 103 candidate AGB1-associated proteins were confidently identified. We identified all of the G protein subunits except XLG1, receptor-like kinases, Ca2+ signaling-related proteins, and 14-3-3-like proteins, all of which may couple with or modulate G protein signaling. We confirmed physical interaction between AGB1 and the receptor-like kinase FERONIA (FER) using bimolecular fluorescence complementation. The Rapid Alkalinization Factor (RALF) family of polypeptides have been shown to be ligands of FER. In this study, we demonstrate that RALF1 regulates stomatal apertures and does so in a G protein-dependent manner, inhibiting stomatal opening and promoting stomatal closure in Columbia but not in agb1 mutants. We further show that AGGs and XLGs, but not GPA1, participate in RALF1-mediated stomatal signaling. Our results suggest that FER acts as a G protein-coupled receptor for plant heterotrimeric G proteins.

Original languageEnglish (US)
Pages (from-to)2426-2440
Number of pages15
JournalPlant physiology
Issue number3
StatePublished - Mar 2018

All Science Journal Classification (ASJC) codes

  • Physiology
  • Genetics
  • Plant Science


Dive into the research topics of 'The G protein β-subunit, AGB1, interacts with FERONIA in RALF1-regulated stomatal movement'. Together they form a unique fingerprint.

Cite this