The Goldilocks Surface

Erwin A. Vogler

Research output: Contribution to journalArticlepeer-review

16 Scopus citations


A minimum in the biological response to materials that is observed to occur within a narrow surface energy range is related to the properties of water at these biology-contacting surfaces. Wetting energetics are calculated using a published theory from which it is further estimated that water molecules bind to these special surfaces through a single hydrogen bond, leaving three other hydrogen bonds to interact with proximal water molecules. It is concluded that, at this Goldilocks Surface, the local chemical environment of surface-bound water is nearly identical to that experienced in bulk water; neither deprived of hydrogen bond opportunities, as it is in contact with a more hydrophobic surface, nor excessively hydrogen bonded to a more hydrophilic surface. A minimum in the biological response occurs because water vicinal (near) to the Goldilocks Surface is not chemically different than bulk water. A more precise definition of the relative terms hydrophobic and hydrophilic for use in biomaterials becomes evident from calculations: >1.3 kJ/mole-of-surface-sites is expended in wetting a hydrophilic surface whereas <1.3 kJ/mole-of-surface-sites is expended in wetting hydrophobic surfaces; hydrophilic surfaces wet with >1 hydrogen bond per water molecule whereas hydrophobic surfaces wet with <1 hydrogen bond per water molecule.

Original languageEnglish (US)
Pages (from-to)6670-6675
Number of pages6
Issue number28
StatePublished - Oct 2011

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Ceramics and Composites
  • Biophysics
  • Biomaterials
  • Mechanics of Materials


Dive into the research topics of 'The Goldilocks Surface'. Together they form a unique fingerprint.

Cite this